Skip to main content
Log in

Tilting sheaves on toric varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract.

In [19], A. King states the following conjecture: Any smooth complete toric variety has a tilting bundle whose summands are line bundles. The goal of this paper is to prove King’s conjecture for the following types of smooth complete toric varieties: (i) Any d-dimensional smooth complete toric variety with splitting fan. (ii) Any d-dimensional smooth complete toric variety with Picard number ≤2. (iii) The blow up of any smooth complete minimal toric surface at T-invariants points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann, K., Hille, L.: Strongly exceptional sequence provided by quivers. Algebras and Representation Theory 2, 1–17 (1999)

    Article  MATH  Google Scholar 

  2. Baer, D.: Tilting sheaves. Manusc. Math. 60, 323a–347 (1988)

    MATH  Google Scholar 

  3. Batyrev, V.V.: On the classification of smooth projective toric varieties. Tohoku Math. J. 43, 569–585 (1991)

    MATH  Google Scholar 

  4. Batyrev, V.V.: Quantum Cohomology Rings of Toric Manifolds. Astérisque 218, 9–35 (1993)

    MATH  Google Scholar 

  5. Batyrev, V.V.: On the classification of toric Fano 4-folds. Algebraic geometry 9, J. Math. Sci. (New York) 94(1), 1021–1050 (1999)

    Google Scholar 

  6. Beilinson, A.A.: Coherent sheaves on ℙn and Problems of Linear Algebra. Funkt. Anal. Appl. 12, 214–216 (1979)

    MATH  Google Scholar 

  7. Bondal, A.I.: Representation of associative algebras and coherent sheaves. Math. USSR Izvestiya 34, 23–42 (1990)

    MATH  Google Scholar 

  8. Bondal, A.I., Orlov, D.O.: Semiorthogonal decomposition for algebraic varieties. alg-geom 9506012, 1995

  9. Bondal, A.I., Orlov, D.O.: Reconstruction of a variety from the derived category and groups of autoquivalences. Compositio math. 125, 327–344 (2001)

    Article  MATH  Google Scholar 

  10. Bourbaki, N., Algèbre, Chapitre X. Masson, 1980

  11. Bridgeland, T., Maciocia, A.: Complex surfaces with equivalent derived categories. Math. Z. 236, 677–697 (2001)

    MATH  Google Scholar 

  12. Bridgeland, T.: Fourier-Mukai transforms for elliptic surfaces. J. Reine Angew. Math. 498, 115–133 (1998)

    MATH  Google Scholar 

  13. Cox, D., Dickenstein, A.: Vanishing and codimension theorems for complete toric varieties. math.AG/0310108

  14. Di Rocco, S., Sommese, A.J.: Chern numbers of ample vector bundles on toric surfaces. Transactions of AMS, 356, 587–598 (2004)

    Google Scholar 

  15. Ewald, G.: On the classification of toric Fano varieties. Disc. Comput. Geom. 3, 49–54 (1988)

    MATH  Google Scholar 

  16. Fulton, W.: Introduction to toric varieties. Ann. Math. Studies, Princeton, 131, 1993

  17. Hartshorne, R.: Algebraic Geometry. GTM 52, Springer-Verlag

  18. Kapranov, M.M.: On the derived category of coherent sheaves on Grassmann manifolds. Math. USSR Izvestiya 24, 183–192 (1985)

    MATH  Google Scholar 

  19. King, A.: Tilting bundles on some rational surfaces. Preprint at http://www.maths.bath.ac.uk/ masadk/papers/

  20. Kleinschmidt, P.: A classification of toric varieties with few generators. Aequationes Math. 35, 254–266 (1988)

    MATH  Google Scholar 

  21. Kontsevich, M.: Homological algebra of mirror symmetry. Proc. of the I.C.M., Vol. 1, 2, Birkhäuser, 1995, pp. 120–139

  22. Maciocia, A.: Generalized Fourier-Mukai transforms. J. Reine Angew. Math. 480, 197–211 (1996)

    MATH  Google Scholar 

  23. Mukai, S.: Fourier functor and its applications to the moduli of bundles on an abelian variety. Adv. Pure Math. 10, 515–550 (1987)

    MATH  Google Scholar 

  24. Oda, T.: Convex Bodies and Algebraic Geometry. Springer-Verlag, 1988

  25. Orlov, D.O.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Math. USSR Izv. 38, 133–141 (1993)

    Google Scholar 

  26. Rudakov, A.N., et al.: Helices and vector bundles: Seminaire Rudakov. Lecture Note Series, 148, Cambridge University Press, 1990

  27. Sato, H.: Toward the classification of higher-dimensional toric Fano varieties. Tohoku Math. J. (2) 52(3), 383–413 (2000)

    Google Scholar 

  28. Schofield, A.: Birational classification of moduli spaces of vector bundles over ℙ2. Indag. Math. (N.S.) 12(3), 433–448 (2001)

    MATH  Google Scholar 

  29. Voskresenskij, V.E., Klyachko, A.A.: Toroidal Fano varieties and root systems. Math. USSR Izv. 24, 221–244 (1985)

    MATH  Google Scholar 

Download references

Acknowledgments.

The authors would like to thank Lutz Hille, Alastair King and Aidan Schofield for helpful discussions and to the referee for giving valuable advise on the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Miró-Roig.

Additional information

Mathematics Subject Classification (1991): 14F05; 14M25

Partially supported by BFM2001-3584.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L., Miró-Roig, R. Tilting sheaves on toric varieties. Math. Z. 248, 849–865 (2004). https://doi.org/10.1007/s00209-004-0684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-004-0684-6

Keywords

Navigation