Skip to main content
Log in

Grafting hyperbolic metrics and Eisenstein series

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The family hyperbolic metric for the plumbing variety {zw = t} and the non holomorphic Eisenstein series \({E(\zeta;2)}\) are combined to provide an explicit expansion for the hyperbolic metrics for degenerating families of Riemann surfaces. Applications include an asymptotic expansion for the Weil–Petersson metric and a local form of symplectic reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. 74(2), 171–191 (1961)

    Article  MathSciNet  Google Scholar 

  2. Bers, L.: Spaces of degenerating Riemann surfaces. In: Discontinuous groups and Riemann surfaces (Proceedings on conference, University of Maryland, College Park, MD, 1973), pp. 43–55. Ann. Math. Stud., No. 79. Princeton University Press, Princeton (1974)

  3. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Bers, L., John, F., Schechter, M.: Partial Differential Equations. Lectures in Applied Mathematics, Vol. III. Interscience Publishers, Wiley, New York (1964)

  5. Borel, A.: Automorphic forms on \({{\rm SL} \sb 2(R)}\) , Vol. 130, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1997)

  6. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces, Vol. 106, Progress in Mathematics. Birkhäuser Boston Inc., Boston (1992)

  7. Daskalopoulos, G., Wentworth, R: Classification of Weil–Petersson isometries. Am. J. Math. 125(4), 941–975 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fay, J.D.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math. 293/294, 143–203 (1977)

    MathSciNet  Google Scholar 

  9. Goldman, W.M.: Projective structures with Fuchsian holonomy. J. Differ. Geom. 25(3), 297–326 (1987)

    MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin. Reprint of the 1998 edn (2001)

  11. Huang, Z.: On asymptotic Weil–Petersson geometry of Teichmüller Space of Riemann surfaces. Asian J. Math. (to appear)

  12. Imayoshi, Y., Taniguchi, M.: An introduction to Teichmüller spaces (Translated and revised from the Japanese by the authors). Springer, Tokyo (1992)

  13. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures (Translated from the Japanese by Kazuo Akao, With an appendix by Daisuke Fujiwara). Springer, New York (1986)

  14. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. I. J. Differ. Geom. 68(3), 571–637 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. II. J. Differ. Geom. 69(1), 163–216 (2005)

    MATH  MathSciNet  Google Scholar 

  16. Masur, H.: Extension of the Weil–Petersson metric to the boundary of Teichmuller space. Duke Math. J. 43(3), 623–635 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mirzakhani, M.: Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math. 167(1), 179–222 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mirzakhani, M.: Weil–Petersson volumes and intersection theory on the moduli space of curves. J. Am. Math. Soc. 20(1), 1–23 (electronic) (2007)

    Google Scholar 

  19. Masur, H., Wolf, M.: The Weil–Petersson isometry group. Geom. Dedicata 93, 177–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nag, S.: The Complex Analytic. Theory of Teichmüller Spaces. Wiley, New York (1988)

  21. Obitsu, K.: Non-completeness of Zograf–Takhtajan’s K ähler metric for Teichmüller space of punctured Riemann surfaces. Commun. Math. Phys. 205(2), 405–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Obitsu, K.: The asymptotic behavior of Eisenstein series and a comparison of the Weil–Petersson and the Zograf–Takhtajan metrics. Publ. Res. Inst. Math. Sci. 37(3), 459–478 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Obitsu, K., To, W.-K., Weng, L.: The asymptotic behavior of the Takhtajan–Zograf metrics. Commun. Math. Phys. (to appear)

  24. Schumacher, G.: The Curvature of the Petersson–Weil Metric on the Moduli Space of K ähler–Einstein Manifolds. In: Complex Analysis and Geometry, Univ. Ser. Math., pp. 339–354. Plenum, New York (1993)

  25. Takhtajan, L.A., Zograf, P.G.: The Selberg zeta function and a new K ähler metric on the moduli space of punctured Riemann surfaces. J. Geom. Phys. 5(4), 551–570 (1988, 1989)

    Google Scholar 

  26. Takhtajan, L.A., Zograf, P.G.: A local index theorem for families of ∂-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces. Commun. Math. Phys. 137(2), 399–426 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Venkov, A.B.: Spectral Theory of Automorphic Functions and its Applications (Translated from the Russian by N. B. Lebedinskaya). Kluwer, Dordrecht (1990)

  28. Wolpert, S.A.: The Weil–Petersson Metric Geometry. Arxiv:math/0801.0175.

  29. Wolpert, S.A.: Cut-and-paste deformations of Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 13(3), 401–413 (1988)

    MathSciNet  Google Scholar 

  30. Wolpert, S.A.: The hyperbolic metric and the geometry of the universal curve. J. Differ. Geom. 31(2), 417–472 (1990)

    MATH  MathSciNet  Google Scholar 

  31. Wolf, M.: Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space. J. Differ. Geom. 33(2), 487–539 (1991)

    MATH  Google Scholar 

  32. Wolpert, S.A.: Spectral limits for hyperbolic surfaces. I, II. Invent. Math. 108(1):67–89, 91–129 (1992)

    Google Scholar 

  33. Wolpert, S.A.: Disappearance of cusp forms in special families. Ann. Math. (2) 139(2), 239–291 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wolpert, S.A.: Geometry of the Weil–Petersson completion of Teichmüller space. In: Surveys in Differential Geometry VIII: Papers in Honor of Calabi, Lawson, Siu and Uhlenbeck, pp. 357–393. International Press, Cambridge (2003)

  35. Wolpert, S.A.: Weil–Petersson perspectives. In: Problems on Mapping Class Groups and Related Topics, Vol. 74, Proceedings in symposium of Pure and Mathematics, pp. 269–282. American Mathematics Society, Providence (2006)

  36. Wolpert, S.A.: Cusps and the family hyperbolic metric. Duke Math. J. 138(3), 423–443 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wolpert, S.A.: Behavior of geodesic-length functions on Teichmüller space. Arxiv:math/0701556, J. Differ. Geom. (to appear)

  38. Yamada, S.: On the geometry of Weil–Petersson completion of Teichmüller spaces. Math. Res. Lett. 11(2–3), 327–344 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Obitsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obitsu, K., Wolpert, S.A. Grafting hyperbolic metrics and Eisenstein series. Math. Ann. 341, 685–706 (2008). https://doi.org/10.1007/s00208-008-0210-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0210-y

Mathematical Subject Classification (2000)

Navigation