Skip to main content
Log in

Steady-State Navier–Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A rigid body, \({\fancyscript{B}}\), moves in a Navier–Stokes liquid, \({\fancyscript{L}}\), filling the whole space outside \({\fancyscript{B}}\). We assume that, when referred to a frame attached to \({\fancyscript{B}}\), the nonzero velocity of the center of mass, ξ, and the angular velocity, ω, of \({\fancyscript{B}}\) are constant and that the flow of \({\fancyscript{L}}\) is steady. Our main theorem implies that every “weak” steady-state solution in the sense of Leray is, in fact, physically reasonable in the sense of Finn, for data of arbitrary “size”. Such a theorem improves and generalizes an analogous famous result of Babenko (Math USSR Sb 20:1–25, 1973), obtained in the case ω = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko K.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Math. USSR, Sb. 20, 1–25 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogovski, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad. In: Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Trudy Sem. S. L. Soboleva, No. 1, Vol. 1980, pp. 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980)

  3. Borchers, W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, Universität Paderborn (1992)

  4. Deuring, P., Kračmar, S., Nečasová, Š.: On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies. Preprint (2009)

  5. Farwig R.: The stationary exterior 3D-problem of Oseen and Navier–Stokes equations in anisotropically weighted spaces. Math. Z. 211(3), 409–448 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farwig R.: An L q-analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. (2) 58(1), 129–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farwig R., Hishida T., Muller D.: L q-theory of a singular winding integral operator arising from fluid dynamics. Pac. J. Math. 215(2), 297–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farwig, R., Sohr, H.: Weighted estimates for the Oseen equations and the Navier–Stokes equations in exterior domains. Theory of the Navier–Stokes equations. Proceedings of the third international conference on the Navier–Stokes equations: theory and numerical methods, Oberwolfach, Germany, June 5–11, 1994 (Eds. Heywood, J.G., et al.). World Scientific, Singapore. Ser. Adv. Math. Appl. Sci. 47, 11–30 (1998)

  9. Finn R.: On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Galdi G.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galdi, G.P.: On the asymptotic structure of D-solutions to steady Navier–Stokes equations in exterior domains. Mathematical Problems Relating to the Navier–Stokes Equation (Ed. Galdi G.P.). World Scientific Publishing Co., River Edge. Ser. Adv. Math. Appl. Sci. 11, 81–104 (1992)

  12. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I: Linearized steady problems. Springer Tracts in Natural Philosophy, Vol. 38. Springer, New York, 1994

  13. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Vol. II: Nonlinear steady problems. Springer Tracts in Natural Philosophy, Vol. 39. Springer, New York, 1994

  14. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. Handbook of mathematical fluid dynamics, Vol. 1 (Eds. Friedlander S., et al.). Elsevier, Amsterdam, 653–791, 2002

  15. Galdi, G.P., Silvestre, A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake. Kyoto Conference on the Navier–Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1, pp. 127–143. Res. Inst. Math. Sci. (RIMS), Kyoto (2007)

  16. Galdi G.P., Silvestre A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184(3), 371–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hishida, T.: Steady motions of the Navier–Stokes fluid around a rotating body. Asymptotic analysis and singularities—hyperbolic and dispersive PDEs and fluid mechanics, Adv. Stud. Pure Math., Vol. 47. Math. Soc. Japan, Tokyo, 117–136, 2007

  18. Hishida, T., Shibata, Y.: Decay estimates of the Stokes flow around a rotating obstacle. Kyoto Conference on the Navier–Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1. Res. Inst. Math. Sci. (RIMS), Kyoto, 167–186, 2007

  19. Hishida T., Shibata Y.: L p L q estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193(2), 339–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kračmar, S., Nečasová, V., Penel, P.: L q-approach to weak solutions of the Oseen flow around a rotating body. Parabolic and Navier–Stokes equations. Part 1. Proceedings of the confererence, Bȩdlewo, Poland, September 10–17, 2006 (Eds. Rencławowicz, J., et al.). Polish Academy of Sciences, Institute of Mathematics, Warsaw. Banach Center Publications 81, Pt. 1, 259–276, 2008

  21. Leray J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  22. Maremonti P., Solonnikov V.: On nonstationary Stokes problem in exterior domains. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24(3), 395–449 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Mizumachi R.: On the asymptotic behavior of incompressible viscous fluid motions past bodies. J. Math. Soc. Japan 36, 497–522 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oseen, C.: Hydrodynamik. Akademische Verlagsgesellschaft M.B.H., Leipzig, 1927

  25. Solonnikov V.: Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations. Am. Math. Soc., Transl., II. Ser. 75, 1–116 (1968)

    MATH  Google Scholar 

  26. Weinberger H. On the steady fall of a body in a Navier–Stokes fluid. Partial diff. Equ., Berkeley 1971. Proc. Sympos. Pure Math. 23, 421–439, 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Kyed.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galdi, G.P., Kyed, M. Steady-State Navier–Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable. Arch Rational Mech Anal 200, 21–58 (2011). https://doi.org/10.1007/s00205-010-0350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0350-6

Keywords

Navigation