Skip to main content
Log in

Protective role of melatonin in mitochondrial dysfunction and related disorders

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Mitochondria are the powerhouse of the eukaryotic cell through their use of oxidative phosphorylation to generate ATP. Mitochondrial dysfunction is considered an important contributing factor in a variety of physiopathological situations such as aging, heart ischemia/reperfusion injury, diabetes and several neurodegenerative and cardiovascular diseases, as well as in cell death. Increased formation of reactive oxygen species, altered respiratory chain complexes activity and opening of the mitochondrial permeability transition pore have been suggested as possible factors responsible for impaired mitochondrial function. Therefore, preventing mitochondrial dysfunction could be an effective therapeutic strategy against cellular degenerative processes. Cardiolipin is a unique phospholipid located at the level of inner mitochondrial membrane where it plays an important role in mitochondrial bioenergetics, as well as in cell death. Cardiolipin abnormalities have been associated with mitochondrial dysfunction in a variety of pathological conditions and aging. Melatonin, the major secretory product of the pineal gland, is a well-known antioxidant agent and thus an effective protector of mitochondrial bioenergetic function. Melatonin was reported to prevent mitochondrial dysfunction from oxidative damage by preserving cardiolipin integrity, and this may explain, at least in part, the beneficial effect of this compound in mitochondrial physiopathology. In this article, mechanisms through which melatonin exerts its protective role in mitochondrial dysfunction and related disorders are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuja PM, Liebmann P, Hayn M, Schauenstein K, Esterbauer H (1997) Antioxidant role of melatonin in lipid peroxidation of human LDL. FEBS Lett 413:289–293

    CAS  PubMed  Google Scholar 

  • Acuña Castroviejo D, López LC, Escames G, López A, García JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240

    PubMed  Google Scholar 

  • Acuna-Castroviejo D, Escames G, Rodriguez MI, Lopez LC (2007) Melatonin role in the mitochondrial function. Front Biosci 12:947–963

    CAS  PubMed  Google Scholar 

  • Acuña-Castroviejo D, Coto-Montes A, Gaia Monti M, Ortiz GG, Reiter RJ (1997) Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 60:PL23–PL29

    PubMed  Google Scholar 

  • Acuña-Castroviejo D, Escames G, León J, Carazo A, Khaldy H (2003) Mitochondrial regulation by melatonin and its metabolites. Adv Exp Med Biol 527:549–557

    PubMed  Google Scholar 

  • Aliev G, Seyidova D, Lamb BT, Obrenovich ME, Siedlak SL, Vinters HV, Friedland RP, LaManna JC, Smith MA, Perry G (2003) Mitochondria and vascular lesions as a central target for the development of Alzheimer’s disease and Alzheimer disease-like pathology in transgenic mice. Neurol Res 25:665–674

    PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871

    CAS  PubMed  Google Scholar 

  • Antolín I, Rodríguez C, Saínz RM, Mayo JC, Uría H, Kotler ML, Rodríguez-Colunga MJ, Tolivia D, Menéndez-Peláez A (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890

    PubMed  Google Scholar 

  • Ban T, Heymann JA, Song Z, Hinshaw JE, Chan DC (2010) OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet 19:2113–2122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bazán S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W (2013) Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 288:401–411

    PubMed Central  PubMed  Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    CAS  PubMed  Google Scholar 

  • Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    CAS  PubMed  Google Scholar 

  • Bondy SC, Sharman EH (2007) Melatonin and the aging brain. Neurochem Int 50:571–580

    CAS  PubMed  Google Scholar 

  • Bondy SC, Lahiri DK, Perreau VM, Sharman KZ, Campbell A, Zhou J, Sharman EH (2004) Retardation of brain aging by chronic treatment with melatonin. Ann N Y Acad Sci 1035:197–215

    CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boveris A, Navarro A (2008) Brain mitochondrial dysfunction in aging. IUBMB Life 60:308–314

    CAS  PubMed  Google Scholar 

  • Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    PubMed  Google Scholar 

  • Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernández C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Gutierrez-Cuesta J, Pallas M, Camins A, Rodríguez-Colunga MJ, Coto-Montes A (2008) Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. J Pineal Res 45:302–311

    CAS  PubMed  Google Scholar 

  • Camara AK, Bienengraeber M, Stowe DF (2011) Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2:1–34

    Google Scholar 

  • Cardinali DP, Pagano ES, Bernasconi PAS, Reynoso R, Scacchi P (2013) Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 63:322–330

    CAS  PubMed  Google Scholar 

  • Carretero M, Escames G, López LC, Venegas C, Dayoub JC, García L, Acuña-Castroviejo D (2009) Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 47:192–200

    CAS  PubMed  Google Scholar 

  • Casley CS, Land JM, Sharpe MA, Clark JB, Duchen MR, Canevari L (2002) Beta-amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol Dis 10:258–267

    CAS  PubMed  Google Scholar 

  • Catala´ A (2007) The ability of melatonin to counteract lipid peroxidation in biological membranes. Curr Mol Med 7:638–649

    PubMed  Google Scholar 

  • Ceraulo L, Ferrugia M, Tesoriere L, Segreto S, Livrea MA, Liveri VT (1999) Interactions of melatonin with membrane models: portioning of melatonin in AOT and lecithin reversed micelles. J Pineal Res 26:108–112

    CAS  PubMed  Google Scholar 

  • Chen JX, Yan SS (2010) Role of mitochondrial amyloid-beta in Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S569–S578

    PubMed  Google Scholar 

  • Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    CAS  PubMed  Google Scholar 

  • Claypool SM (2009) Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta 1788:2059–2068

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clementi ME, Marini S, Coletta M, Orsini F, Giardina B, Misiti F (2005) Abeta (31–35) and Abeta (25–35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett 579:2913–2918

    CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crompton M (2004) Mitochondria and aging: a role for the permeability transition? Aging Cell 3:3–6

    CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabó C (1997) Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res 23:106–116

    CAS  PubMed  Google Scholar 

  • DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J (2009) Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186:793–803

    PubMed Central  CAS  PubMed  Google Scholar 

  • DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    CAS  PubMed  Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P (2010) Myocardial ischemia-reperfusion injury: possible role of melatonin. World J Cardiol 2:233–236

    PubMed Central  PubMed  Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P (2012) The role of melatonin in acute myocardial infarction. Front Biosci 17:2433–2441

    Google Scholar 

  • Dong W, Huang F, Fan W, Cheng S, Chen Y, Zhang W, Shi H, He H (2010) Differential effects of melatonin on amyloid-beta peptide 25–35-induced mitochondrial dysfunction in hippocampal neurons at different stages of culture. J Pineal Res 48:117–125

    CAS  PubMed  Google Scholar 

  • Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440

    CAS  PubMed  Google Scholar 

  • Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, Nussbaum RL (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 25:10190–10201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC (2010) The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 8:182–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Z, Qin C, Chang Y, Zhang JT (2006) Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic Biol Med 40:101–109

    CAS  PubMed  Google Scholar 

  • Fowler G, Daroszewska M, Ingold KU (2003) Melatonin does not “directly scavenge hydrogen peroxide”: demise of another myth. Free Radic Biol Med 34:77–83

    CAS  PubMed  Google Scholar 

  • Fry M, Green M (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880

    CAS  PubMed  Google Scholar 

  • García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA, Tan DX, Reiter RJ, Ramírez JM, Bernal-Pérez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237

    PubMed  Google Scholar 

  • Gautier CA, Corti O, Brice A (2014) Mitochondrial dysfunctions in Parkinson’s disease. Rev Neurol 170:339–343

    CAS  PubMed  Google Scholar 

  • Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443

    CAS  PubMed  Google Scholar 

  • Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418:291–296

    CAS  PubMed  Google Scholar 

  • Giacomo CG, Antonio M (2007) Melatonin in cardiac ischemia/reperfusion-induced mitochondrial adaptive changes. Cardiovasc Hematol Disord Drug Targets 7:163–169

    CAS  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043

    CAS  PubMed  Google Scholar 

  • Gómez LA, Hagen TM (2012) Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 23:758–767

    PubMed  Google Scholar 

  • Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877–885

    CAS  PubMed  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol. 46:821–831

    CAS  PubMed  Google Scholar 

  • Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27:119–130

    CAS  PubMed  Google Scholar 

  • Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55:325–356

    CAS  PubMed  Google Scholar 

  • Hardeland R, Fuhrberg B (1996) Ubiquitous melatonin presence and effects in unicells, plants and animals. Trends Comp Biochem 2:25–44

    CAS  Google Scholar 

  • Hardeland R, Pandi-Perumal SR, Cardinali DP (2006) Melatonin. Int J Biochem Cell Biol 3:313–316

    Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  • Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21:569–576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hibaoui Y, Roulet E, Ruegg UT (2009) Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells. J Pineal Res 47:238–252

    CAS  PubMed  Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    CAS  PubMed  Google Scholar 

  • Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    CAS  PubMed  Google Scholar 

  • Jiang J, Huang Z, Zhao Q, Feng W, Belikova NA, Kagan VE (2008) Interplay between bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis. Biochem Biophys Res Commun 368:145–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jou MJ (2011) Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca(2+) stress in astrocyte. J Pineal Res 50:427–435

    CAS  PubMed  Google Scholar 

  • Judge S, Leeuwenburgh C (2007) Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 292:C1983–C1992

    CAS  PubMed  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37:1963–1985

    CAS  PubMed  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    CAS  PubMed  Google Scholar 

  • Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 271:H1215–H1228

    CAS  PubMed  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    CAS  PubMed  Google Scholar 

  • Klingenberg M (2009) Cardiolipin and mitochondrial carriers. Biochim Biophys Acta 1788:2048–2058

    CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    CAS  PubMed  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008

    CAS  PubMed  Google Scholar 

  • Lenaz G, Bovina C, Castelluccio C, Fato R, Formiggini G, Genova ML, Marchetti M, Pich MM, Pallotti F, Castelli GP, Biagini G (1997) Mitochondrial complex I defects in aging. Mol Cell Biochem 174:329–333

    CAS  PubMed  Google Scholar 

  • Leon J, Acuña-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ (2004) Melatonin and mitochondrial function. Life Sci 7:765–790

    Google Scholar 

  • Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952

    CAS  PubMed  Google Scholar 

  • Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502

    CAS  PubMed  Google Scholar 

  • Livrea MA, Tesoriere L, D’arpa D, Morreale M (1997) Reaction of melatonin with lipoperoxyl radicals in phospholipid bilayers. Free Radic Biol Med 5:706–711

    Google Scholar 

  • Lochner A, Huisamen B, Nduhirabandi F (2013) Cardioprotective effect of melatonin against ischaemia/reperfusion damage. Front Biosci 5:305–315

    Google Scholar 

  • López A, García JA, Escames G, Venegas C, Ortiz F, López LC, Acuña-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198

    PubMed  Google Scholar 

  • Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maharaj DS, Maharaj H, Daya S, Glass BD (2006) Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J Neurochem 1:78–81

    Google Scholar 

  • Mander P, Brown GC (2004) Nitric oxide, hypoxia and brain inflammation. Biochem Soc Trans 32:1068–1069

    CAS  PubMed  Google Scholar 

  • Marom M, Safonov R, Amram S, Avneon Y, Nachliel E, Gutman M, Zohary K, Azem A, Tsfadia Y (2009) Interaction of the Tim44 C-terminal domain with negatively charged phospholipids. Biochemistry 48:11185–11195

    CAS  PubMed  Google Scholar 

  • Martín M, Macías M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuña-Castroviejo D (2000) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 28:242–248

    PubMed  Google Scholar 

  • Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357

    PubMed  Google Scholar 

  • Massaad CA, Pautler RG, Klann E (2009) Mitochondrial superoxide: a key player in Alzheimer’s disease. Aging (Albany NY) 1:758–761

    CAS  Google Scholar 

  • Mather M, Rottenberg H (2000) Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun 273:603–608

    CAS  PubMed  Google Scholar 

  • Mekhloufi J, Bonnefont-Rousselot D, Yous S, Lesieur D, Couturier M, Thérond P, Legrand A, Jore D, Gardès-Albert M (2005) Antioxidant activity of melatonin and a pinoline derivative on linoleate model system. J Pineal Res 39:27–33

    CAS  PubMed  Google Scholar 

  • Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li QX, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. Plos One 2:1–12

    Google Scholar 

  • Menendez-Pelaez A, Reiter RJ (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 15:59–69

    CAS  PubMed  Google Scholar 

  • Messner M, Hardeland R, Rodenbeck A, Huether G (1998) Tissue retention and subcellular distribution of continuously infused melatonin in rats under near physiological conditions. J Pineal Res 25:251–259

    CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179:42–48

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JEJR (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun. 163:1450–1455

    CAS  PubMed  Google Scholar 

  • Mullin S, Schapira AH (2015) Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin 33:1–17

    PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46:1313–1326

    CAS  PubMed  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686

    CAS  PubMed  Google Scholar 

  • Navarro-Alarcón M, Ruiz-Ojeda FJ, Blanca-Herrera RM, A-Serrano MM, Acuña-Castroviejo D, Fernández-Vázquez G, Agil A (2014) Melatonin and metabolic regulation: a review. Food Funct 5:2806–2832

    PubMed  Google Scholar 

  • Nohl H, Stolze K (1992) Ubisemiquinones of the mitochondrial respiratory chain do not interact with molecular oxygen. Free Radic Res Commun 16:409–419

    CAS  PubMed  Google Scholar 

  • Ong SB, Samangoueia P, Kalkhorana SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34

    CAS  PubMed  Google Scholar 

  • Ortiz GG, Crespo-López ME, Morán-Moguel C, García JJ, Reiter RJ, Acuña-Castroviejo D (2001) Protective role of melatonin against MPTP-induced mouse brain cell DNA fragmentation and apoptosis in vivo. Neuro Endocrinol Lett 22:101–108

    CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007a) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  • Ott M, Zhivotovsky B, Orrenius S (2007b) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14:1243–1247

    CAS  PubMed  Google Scholar 

  • Ozawa T, Tanaka M, Wakabayashi T (1982) Crystallization of mitochondrial cytochrome oxidase. Proc Natl Acad Sci USA 79:7175–7179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Öztürk G, Akbulut KG, Güney Ş, Acuna-Castroviejo D (2012) Age-related changes in the rat brain mitochondrial antioxidative enzyme ratios: modulation by melatonin. Exp Gerontol 47:706–711

    PubMed  Google Scholar 

  • Pak JW, Herbst A, Bua E, Gokey N, McKenzie D, Aiken JM (2003) Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging. Aging Cell 2:1–7

    CAS  PubMed  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777:1249–1262

    CAS  PubMed  Google Scholar 

  • Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, Hardeland R, Cardinali DP (2013) Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 23:267–300

    CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141

    CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–59

    CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45:643–650

    CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010a) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 4:297–310

    Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2010b) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48:1286–1295

    CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58:447–457

    CAS  PubMed  Google Scholar 

  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2013) Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev 134:1–9

    CAS  PubMed  Google Scholar 

  • Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014a) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408–417

    CAS  PubMed  Google Scholar 

  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014b) Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal 20:1925–1953

    CAS  PubMed  Google Scholar 

  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014c) Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 20:14205–14218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parlakpinar H, Sahna E, Ozer MK, Ozugurlu F, Vardi N, Acet A (2002) Physiological and pharmacological concentrations of melatonin protect against cisplatin-induced acute renal injury. J Pineal Res 33:161–166

    CAS  PubMed  Google Scholar 

  • Patki G, Lau YS (2011) Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson’s disease. Pharmacol Biochem Behav 99:704–711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perier C, Tieu K, Guegan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S, Vila M (2005) Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA 102:19126–19131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–438

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G (2003a) Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 17:714–716

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Ruggiero FM, Paradies G (2003b) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 15:2202–2208

    Google Scholar 

  • Petrosillo G, Casanova G, Matera M, Ruggiero FM, Paradies G (2006a) Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: induction of permeability transition and cytochrome c release. FEBS Lett 580:6311–6316

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Di Venosa N, Pistolese M, Casanova G, Tiravanti E, Colantuono G, Federici A, Paradies G, Ruggiero FM (2006b) Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: role of cardiolipin. FASEB J. 20:269–276

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Fattoretti P, Matera M, Ruggiero FM, Bertoni-Freddari C, Paradies G (2008a) Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res 11:935–943

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Matera M, Casanova G, Ruggiero FM, Paradies G (2008b) Mitochondrial dysfunction in rat brain with aging: involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53:126–131

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Colantuono G, Moro N, Ruggiero FM, Tiravanti E, Di Venosa N, Fiore T, Paradies G (2009a) Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Physiol Heart Circ Physiol 297:H1487–H1493

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G (2009b) Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med 46:88–94

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009c) Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic Biol Med 47:969–974

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Moro N, Paradies V, Ruggiero FM, Paradies G (2010) Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J Pineal Res 48:340–346

    CAS  PubMed  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:PL271–PL276

    CAS  PubMed  Google Scholar 

  • Pieri C, Marra M, Gaspar R, Damjanovich S (1996) Melatonin protects LDL from oxidation but does not prevent the apolipoprotein derivatization. Biochem Biophys Res Commun 2:256–260

    Google Scholar 

  • Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM, Antonny B, Jackson CL (2011) α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194:89–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Protter D, Lang C, Cooper AA (2012) α-Synuclein and mitochondrial dysfunction: a pathogenic partnership in Parkinson’s disease? Parkinsons Dis 2012:829207

    PubMed Central  PubMed  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Richardson BA, Johnson LY (1980) Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science 210:1372–1373

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Craft CM, Johnson JE (1981) Age-associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology 109:1295–1297

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan D, Kim SJ, Manchester LC, Qi W, Garcia JJ, Cabrera JC, El-Sokkary G, Rouvier-Garay V (1999) Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech Ageing Dev 110:157–173

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 7:444–458

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Paredes SD, Korkmaz A, Jou MJ, Tan DX (2008) Melatonin combats molecular terrorism at the mitochondrial level. Interdiscip Toxicol 2:137–149

    Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 5:377–380

    PubMed Central  PubMed  Google Scholar 

  • Ren M, Phoon CK, Schlame M (2014) Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55:1–16

    CAS  PubMed  Google Scholar 

  • Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163

    CAS  PubMed  Google Scholar 

  • Rodríguez MI, Carretero M, Escames G, López LC, Maldonado MD, Tan DX, Reiter RJ, Acuña-Castroviejo D (2007) Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res 41:15–24

    PubMed  Google Scholar 

  • Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, Sánchez V, Romeu M, Acuña-Castroviejo D (2008) Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol 43:749–756

    PubMed  Google Scholar 

  • Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. J Biol Chem 269:26066–26075

    CAS  PubMed  Google Scholar 

  • Rytomaa M, Mustonen P, Kinnunen PK (1992) Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J Biol Chem 267:22243–22248

    CAS  PubMed  Google Scholar 

  • Sahna E, Parlakpinar H, Turkoz Y, Acet A (2005) Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res 5(4):91–95

    Google Scholar 

  • Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol 3:570–581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saravanan KS, Sindhu KM, Mohanakumar KP (2007) Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 42:247–253

    CAS  PubMed  Google Scholar 

  • Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    CAS  PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  • Schlame M, Ren M (2009) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta 1788:2080–2083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    CAS  PubMed  Google Scholar 

  • Schon EA, DiMauro S, Hirano M, Gilkerson RW (2010) Therapeutic prospects for mitochondrial disease. Trends Mol Med 16:268–276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma R, McMillan CR, Tenn CC, Niles LP (2006) Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res 1068:230–236

    CAS  PubMed  Google Scholar 

  • Sharpley MS, Shannon RJ, Draghi F, Hirst J (2006) Interactions between phospholipids and NADH: ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45:241–248

    CAS  PubMed  Google Scholar 

  • Shen J, Du T, Wang X, Duan C, Gao G, Zhang J, Lu L, Yang H (2014) α-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res 1591:14–26

    CAS  PubMed  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    CAS  PubMed  Google Scholar 

  • Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW, Hardeland R, Pandi-Perumal SR (2011a) Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 4:297–317

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP (2011b) Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011:1–16

    Google Scholar 

  • Stadtman ER (2002) Importance of individuality in oxidative stress and aging. Free Radic Biol Med 33:597–604

    CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    CAS  PubMed  Google Scholar 

  • Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110

    CAS  PubMed  Google Scholar 

  • Tan DX, Pöeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, Barlow-Walden LR (1993) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett 70:65–71

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, Vijayalaxmi, Shepherd AM (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 253:614–620

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 29:1177–1185

    CAS  PubMed  Google Scholar 

  • Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–197

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 1:28–42

    Google Scholar 

  • Teixeira A, Morfim MP, de Cordova CA, Charão CC, de Lima VR, Creczynski-Pasa TB (2003) Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite. J Pineal Res 35:262–268

    CAS  PubMed  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    CAS  PubMed  Google Scholar 

  • Urata Y, Honma S, Goto S, Todoroki S, Iida T, Cho S, Honma K, Kondo T (1999) Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 27:838–847

    CAS  PubMed  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    CAS  PubMed  Google Scholar 

  • Wang X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 15:345–357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med 227:671–682

    CAS  Google Scholar 

  • Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, Jiang S, Di S, Qu Y, Reiter RJ, Yi D (2014) A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res 57:357–366

    CAS  PubMed  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Paradies or Giuseppe Petrosillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paradies, G., Paradies, V., Ruggiero, F.M. et al. Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol 89, 923–939 (2015). https://doi.org/10.1007/s00204-015-1475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1475-z

Keywords

Navigation