Skip to main content

Advertisement

Log in

Bortezomib-induced peripheral neurotoxicity: an update

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This review paper provides a critical exploration of updates concerning the spectrum of characteristics and treatment options of bortezomib-induced peripheral neuropathy (BIPN). Emphasis is given on pathogenesis issues. Although the mechanism underlying BIPN still remains elusive, it is increasingly acknowledged that the inhibition of proteasome activity in dorsal root ganglia and peripheral nerves, the mitochondrial-mediated disruption of Ca++ intracellular homeostasis and the disregulation in nuclear factor κB and brain-derived neurotrophic factor play a significant pathogenic role. Assessment of BIPN is based on comprehensive grading scales, using a combination of “subjective” and “objective” parameters, which turn out to be ambiguously interpreted, thus leading to both under- and misreporting of its true incidence and severity. BIPN is clinically defined as a typical example of a dose-dependent, distally attenuated painful, sensory neuronopathy. Patients pre-treated with neurotoxic regimens and those with pre-existing neuropathy are more likely to develop severe neurotoxicity. To date, there is no effective pharmacological treatment to prevent BIPN, and therefore, interventions remain merely symptomatic to focus on the alleviation of neuropathic pain. Hence, strict adherence to the dose reduction and schedule change algorithm is recommended in order to prevent treatment-emergent BIPN and allow the continuation of treatment. Further studies in animal models and humans, including experimental, clinical, neurophysiological and pharmacogenetic approaches, are needed to allow the identification of the true spectrum of BIPN pathogenesis and characteristics. It is expected that such comprehensive approaches would be the starting point for the development of early preventive and therapeutic interventions against BIPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421

    Article  CAS  PubMed  Google Scholar 

  • Alé A, Bruna J, Navarro X, Udina E (2014) Neurotoxicity induced by antineoplastic proteasome inhibitors. Neurotoxicology. doi:10.1016/j.neuro.2014.02.001

  • Argyriou AA, Polychronopoulos P, Koutras A et al (2006) Is advanced age associated with increased incidence and severity of chemotherapy-induced peripheral neuropathy? Support Care Cancer 14(3):223–229

    Article  PubMed  Google Scholar 

  • Argyriou AA, Polychronopoulos P, Koutras A et al (2007) Clinical and electrophysiological features of peripheral neuropathy induced by administration of cisplatin plus paclitaxel-based chemotherapy. Eur J Cancer Care (Engl) 16(3):231–237

    Article  CAS  Google Scholar 

  • Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112(5):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Argyriou AA, Zolota V, Kyriakopoulou O, Kalofonos HP (2010) Toxic peripheral neuropathy associated with commonly used chemotherapeutic agents. J BUON 15(3):435–446

    CAS  PubMed  Google Scholar 

  • Argyriou AA, Bruna J, Marmiroli P, Cavaletti G (2012) Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 82(1):51–77

    Article  PubMed  Google Scholar 

  • Argyriou AA, Briani C, Cavaletti G et al (2013) Advanced age and liability to oxaliplatin-induced peripheral neuropathy: post hocanalysis of a prospective study. Eur J Neurol 20(5):788–794

    Article  CAS  PubMed  Google Scholar 

  • Argyriou AA, Kyritsis AP, Makatsoris T, Kalofonos HP (2014) Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Manag Res 6:135–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avcu F, Ural AU, Cetin T, Nevruz O (2008) Effects of bortezomib on platelet aggregation and ATP release in human platelets, in vitro. Thromb Res 121(4):567–571

    Article  CAS  PubMed  Google Scholar 

  • Azoulay D, Vachapova V, Shihman B, Miler A, Karni A (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167(1–2):215–218

    Article  CAS  PubMed  Google Scholar 

  • Azoulay D, Lavie D, Horowitz N et al (2014) Bortezomib-induced peripheral neuropathy is related to altered levels of brain-derived neurotrophic factor in the peripheral blood of patients with multiple myeloma. Br J Haematol 164(3):454–456

    Article  CAS  PubMed  Google Scholar 

  • Bedford L, Hay D, Devoy A et al (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28(33):8189–8198

    Article  CAS  PubMed  Google Scholar 

  • Bostock H, Cikurel K, Burke D (1998) Threshold tracking techniques in the study of human peripheral nerve. Muscle Nerve 21(2):137–158

    Article  CAS  PubMed  Google Scholar 

  • Boyette-Davis JA, Cata JP, Zhang H, Driver LC, Wendelschafer-Crabb G, Kennedy WR, Dougherty PM (2011) Follow-up psychophysical studies in bortezomib-related chemoneuropathy patients. J Pain 12(9):1017–1024

    Article  PubMed Central  PubMed  Google Scholar 

  • Broyl A, Corthals SL, Jongen JL et al (2010) Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol 11(11):1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Broyl A, Jongen JL, Sonneveld P (2012) General aspects and mechanisms of peripheral neuropathy associated with bortezomib in patients with newly diagnosed multiple myeloma. Semin Hematol 49(3):249–257

    Article  CAS  PubMed  Google Scholar 

  • Bruna J, Udina E, Alé A et al (2010) Neurophysiological, histological and immunohistochemical characterization of bortezomib-induced neuropathy in mice. Exp Neurol 223(2):599–608

    Article  CAS  PubMed  Google Scholar 

  • Bruna J, Alé A, Velasco R, Jaramillo J, Navarro X, Udina E (2011) Evaluation of pre-existing neuropathy and bortezomib retreatment as risk factors to develop severe neuropathy in a mouse model. J Peripher Nerv Syst 16(3):199–212

    Article  CAS  PubMed  Google Scholar 

  • Carozzi VA, Canta A, Oggioni N et al (2010) Neurophysiological and neuropathological characterization of new murine models of chemotherapy-induced chronic peripheral neuropathies. Exp Neurol 226(2):301–309

    Article  CAS  PubMed  Google Scholar 

  • Carozzi VA, Renn CL, Bardini M et al (2013) Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS ONE 8(9):e72995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casafont I, Berciano MT, Lafarga M (2010) Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 17(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Cata JP, Weng HR, Burton AW, Villareal H, Giralt S, Dougherty PM (2007) Quantitative sensory findings in patients with bortezomib-induced pain. J Pain 8(4):296–306

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Gilardini A, Canta A et al (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204(1):317–325

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Frigeni B, Lanzani F et al (2010) Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur J Cancer 46(3):479–494

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Alberti P, Marmiroli P (2011) Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol 12(12):1551–1561

    Article  Google Scholar 

  • Cavaletti G, Cornblath DR, Merkies IS, CI-PeriNomS Group et al (2013) The chemotherapy-induced peripheral neuropathy outcome measures standardization study: from consensus to the first validity and reliability findings. Ann Oncol 24(2):454–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavo M, Tacchetti P, Patriarca F et al (2010) Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376:2075–2085

    Article  CAS  PubMed  Google Scholar 

  • Cavo M, Pantani L, Petrucci MT et al (2012) Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood 120:9–19

    Article  CAS  PubMed  Google Scholar 

  • Chiorazzi A, Canta A, Meregalli C et al (2013) Antibody against tumor necrosis factor-alpha reduces bortezomib-induced allodynia in a rat model. Anticancer Res 33(12):5453–5459

    CAS  PubMed  Google Scholar 

  • Cho J, Kang D, Lee JY, Kim K, Kim SJ (2014) Impact of dose modification on intravenous Bortezomib-induced peripheral neuropathy in multiple myeloma patients. Support Care Cancer. doi:10.1007/s00520-014-2256-6

    Google Scholar 

  • Coiffier B, Osmanov EA, Hong X et al (2011) Bortezomib plus rituximab versus rituximab alone in patients with relapsed, rituximab-naive or rituximab-sensitive, follicular lymphoma: a randomised phase 3 trial. Lancet Oncol 12(8):773–784

    Article  CAS  PubMed  Google Scholar 

  • Corso A, Mangiacavalli S, Varettoni M, Pascutto C, Zappasodi P, Lazzarino M (2010) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res 234:471–474

    Article  Google Scholar 

  • Corthals SL, Kuiper R, Johnson DC et al (2011) Genetic factors underlying the risk of bortezomib induced peripheral neuropathy in multiple myeloma patients. Haematologica 96(11):1728–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desterro JM, Rodriguez MS, Hay RT (2000) Regulation of transcription factors by protein degradation. Cell Mol Life Sci 57(8–9):1207–1219

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos MA, Mateos MV, Richardson PG et al (2011) Risk factors for, and reversibility of, peripheral neuropathy associated with bortezomib-melphalan-prednisone in newly diagnosed patients with multiple myeloma: subanalysis of the phase 3 VISTA study. Eur J Haematol 86:23–31

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos M, Siegel DS, Lonial S et al (2013) Vorinostat or placebo in combination with bortezomib in patients with multiple myeloma (VANTAGE 088): a multicentre, randomised, double-blind study. Lancet Oncol 14:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Favis R, Sun Y, van de Velde H et al (2011) Genetic variation associated with bortezomib-induced peripheral neuropathy. Pharmacogenet Genomics 21(3):121–129

    Article  CAS  PubMed  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujimura H, Altar CA, Chen R et al (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87(4):728–734

    CAS  PubMed  Google Scholar 

  • Garderet L, Iacobelli S, Moreau P et al (2012) Superiority of the triple combination of bortezomib-thalidomide-dexamethasone over the dual combination of thalidomide-dexamethasone in patients with multiple myeloma progressing or relapsing after autologous transplantation: the MMVAR/IFM 2005-04 Randomized Phase III Trial from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 30:2475–2482

    Article  CAS  PubMed  Google Scholar 

  • Han SE, Boland RA, Krishnan AV, Vucic S, Lin CS, Kiernan MC (2008) Changes in human sensory axonal excitability induced by an ischaemic insult. Clin Neurophysiol 119(9):2054–2063

    Article  CAS  PubMed  Google Scholar 

  • Harousseau JL, Attal M, Avet-Loiseau H et al (2010) Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol 28:4621–4629

    Article  CAS  PubMed  Google Scholar 

  • Hjorth M, Hjertner Ø, Knudsen LM et al (2012) Thalidomide and dexamethasone vs. bortezomib and dexamethasone for melphalan refractory myeloma: a randomized study. Eur J Haematol 88:485–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jagannath S, Barlogie B, Berenson J et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172

    Article  CAS  PubMed  Google Scholar 

  • Jagannath S, Durie BG, Wolf J et al (2005) Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 129:776–783

    Article  CAS  PubMed  Google Scholar 

  • Kiernan MC, Bostock H (2000) Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain 123(12):2542–2551

    Article  PubMed  Google Scholar 

  • Kiernan MC, Burke D, Andersen KV, Bostock H (2000) Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23(3):399–409

    Article  CAS  PubMed  Google Scholar 

  • Lafarga M, Berciano MT, Pena E et al (2002) Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 13(8):2771–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2 + is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65(9):3828–3836

    Article  CAS  PubMed  Google Scholar 

  • Lanzani F, Mattavelli L, Frigeni B et al (2008) Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J Peripher Nerv Syst 13(4):267–274

    Article  PubMed  Google Scholar 

  • Mateos MV, Hernández JM, Hernández MT et al (2006) Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 108:2165–2172

    Article  CAS  PubMed  Google Scholar 

  • McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Update 11(4–5):164–179

    Article  CAS  Google Scholar 

  • McNicol ED, Midbari A, Eisenberg E (2013) Opioids for neuropathic pain. Cochrane Database Syst Rev 8:CD006146

    PubMed  Google Scholar 

  • Mellqvist UH, Gimsing P, Hjertner O et al (2013) Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood 121:4647–4654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meregalli C, Canta A, Carozzi VA et al (2010) Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain 14(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Meregalli C, Ceresa C, Canta A et al (2012) CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. J Pain Res 5:151–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meregalli C, Chiorazzi A, Carozzi VA et al (2014) Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib-induced peripheral neuropathy. Cell Cycle 13(4):612–621

    Article  CAS  PubMed  Google Scholar 

  • Mikhael JR, Belch AR, Prince HM et al (2009) High response rate to bortezomib with or without dexamethasone in patients with relapsed or refractory multiple myeloma: results of a global phase 3b expanded access program. Br J Haematol 144:169–175

    Article  CAS  PubMed  Google Scholar 

  • Morabito F, Gentile M, Mazzone C et al (2011) Safety and efficacy of bortezomib-melphalan-prednisone-thalidomide followed by bortezomib-thalidomide maintenance (VMPT-VT) versus bortezomib-melphalan-prednisone (VMP) in untreated multiple myeloma patients with renal impairment. Blood 118:5759–5766

    Article  CAS  PubMed  Google Scholar 

  • Moreau P, Pylypenko H, Grosicki S et al (2011a) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12:431–440

    Article  PubMed  Google Scholar 

  • Moreau P, Avet-Loiseau H, Facon T et al (2011b) Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood 118:5752–5758

    Article  CAS  PubMed  Google Scholar 

  • Nasu S, Misawa S, Nakaseko C et al (2014) Bortezomib-induced neuropathy: axonal membrane depolarization precedes development of neuropathy. Clin Neurophysiol 125(2):381–387

    Article  PubMed  Google Scholar 

  • Nodera H, Spieker A, Sung M, Rutkove S (2011) Neuroprotective effects of Kv7 channel agonist, retigabine, for cisplatin-induced peripheral neuropathy. Neurosci Lett 505(3):223–227

    Article  CAS  PubMed  Google Scholar 

  • Orlowski RZ, Nagler A, Sonneveld P et al (2007) Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 25:3892–3901

    Article  CAS  PubMed  Google Scholar 

  • Palanca A, Casafont I, Berciano MT, Lafarga M (2014) Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci 71(10):1961–1975

    Article  CAS  PubMed  Google Scholar 

  • Palumbo A, Bringhen S, Rossi D et al (2010) Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: a randomized controlled trial. J Clin Oncol 28:5101–5109

    Article  CAS  PubMed  Google Scholar 

  • Park SB, Goldstein D, Krishnan AV et al (2013) Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63(6):419–437

    Article  PubMed  Google Scholar 

  • Piperdi B, Ling YH, Liebes L, Muggia F, Perez-Soler R (2011) Bortezomib: understanding the mechanism of action. Mol Cancer Ther 10(11):2029–2030

    Article  CAS  PubMed  Google Scholar 

  • Poruchynsky MS, Sackett DL, Robey RW, Ward Y, Annunziata C, Fojo T (2008) Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 7(7):940–949

    Article  CAS  PubMed  Google Scholar 

  • Postma TJ, Heimans JJ, Muller MJ, Ossenkoppele GJ, Vermorken JB, Aaronson NK (1998) Pitfalls in grading severity of chemotherapy-induced peripheral neuropathy. Ann Oncol 9(7):739–744

    Article  CAS  PubMed  Google Scholar 

  • Ravaglia S, Corso A, Piccolo G et al (2008) Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol 119(11):2507–2512

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2005) Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Mitsiades C, Hideshima T, Anderson KC (2006a) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 57:33–47

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Briemberg H, Jagannath S et al (2006b) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Xie W, Mitsiades C et al (2009a) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27(21):3518–3525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2009b) Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 144:895–903

    Article  CAS  PubMed  Google Scholar 

  • Roccaro AM, Vacca A, Ribatti D (2006) Bortezomib in the treatment of cancer. Recent Pat Anticancer Drug Discov 1(3):397–403

    Article  CAS  PubMed  Google Scholar 

  • Rosiñol L, Oriol A, Teruel AI et al (2012) Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood 120:1589–1596

    Article  PubMed  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK, VISTA Trial Investigators et al (2008a) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  CAS  PubMed  Google Scholar 

  • San Miguel JF, Richardson PG, Sonneveld P et al (2008b) Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia 22:842–849

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Schmitt S, Buac D, Dou QP (2013) Targeting the ubiquitin-proteasome system for cancer therapy. Exp Opin Ther Targets 17(9):1091–1108

    Article  CAS  Google Scholar 

  • Siau C, Bennett GJ (2006) Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth Analg 102(5):1485–1490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sioka C, Kyritsis AP (2009) Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother Pharmacol 63(5):761–767

    Article  CAS  PubMed  Google Scholar 

  • Smith EM, Pang H, Cirrincione C, Alliance for Clinical Trials in Oncology et al (2013) Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 309(13):1359–1367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonneveld P, Schmidt-Wolf IG, van der Holt B et al (2012) Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol 30:2946–2955

    Article  CAS  PubMed  Google Scholar 

  • Staff NP, Podratz JL, Grassner L et al (2013) Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology 39:124–131

    Article  CAS  PubMed  Google Scholar 

  • Tsukaguchi M, Shibano M, Matsuura A, Mukai S (2013) The protective effects of lafutidine for bortezomib induced peripheral neuropathy. J Blood Med 4:81–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velasco R, Petit J, Clapés V, Verdú E, Navarro X, Bruna J (2010) Neurological monitoring reduces the incidence of bortezomib-induced peripheral neuropathy in multiple myeloma patients. J Peripher Nerv Syst 15(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119(Pt 10):1977–1984

    Article  Google Scholar 

  • Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol 4(3):159–169

    Article  CAS  PubMed  Google Scholar 

  • Zangari M, Guerrero J, Cavallo F, Prasad HK, Esseltine D, Fink L (2008) Hemostatic effects of bortezomib treatment in patients with relapsed or refractory multiple myeloma. Haematologica 93(6):953–954

    Article  CAS  PubMed  Google Scholar 

  • Zaroulis CK, Chairopoulos K, Sachanas SP et al (2014) Assessment of bortezomib induced peripheral neuropathy in multiple myeloma by the reduced Total Neuropathy Score. Leuk Lymphoma. doi:10.3109/10428194.2013.873535

    PubMed  Google Scholar 

Download references

Acknowledgments

Each author jointly contributed to the preparation of this review paper.

Conflict of interest

We have no conflicts of interest. No funding source played a role in the preparation of this paper or in the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Argyriou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyriou, A.A., Cavaletti, G., Bruna, J. et al. Bortezomib-induced peripheral neurotoxicity: an update. Arch Toxicol 88, 1669–1679 (2014). https://doi.org/10.1007/s00204-014-1316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1316-5

Keywords

Navigation