Skip to main content
Log in

Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Toxic cyanobacteria blooms are increasingly frequent and object of greater concern due to its ecological and health impacts. One important lack in the toxic cyanobacteria research field is to understand which parameters influence most and how they operate to regulate the overall levels of cyanotoxins in a body of water. MC concentration is believed to be influenced by changes in several seasonal environmental factors that influence the succession of toxic cyanobacteria. In the last years, qPCR (quantitative polymerase chain reaction) has been applied to determine the seasonal and temporal shifts in the proportions of MC-producing and non-MC-producing subpopulations by quantifying both mcy genotypes and total population numbers. We discuss the most prominent and recent studies using qPCR to address hepatotoxic cyanobacteria population dynamics and evaluate how they helped understanding the factors promoting the growth of toxic strains in situ and the succession of hepatotoxin-producing genera in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amer R, Díez B, El-Shehawy R (2009) Diversity of hepatotoxic cyanobacteria in the Nile Delta, Egypt. J Environ Monit 11:8

    Article  Google Scholar 

  • Banker R, Carmeli S, Hadas O (1997) Identification of cylindrospermopsin in Aphanizomenon ovalisporum (cyanophyceae) isolated from Lake Kinneret, Israel. J Phycol 33:613–616

    Article  CAS  Google Scholar 

  • Baxa DV, Kurobe T, Ger KA, Lehman PW, Teh SJ (2010) Estimating the abundance of toxic Microcystis in the San Francisco Estuary using quantitative real-time PCR. Harmful Algae 9:342–349

    Article  CAS  Google Scholar 

  • Becker S, Boger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953

    Article  PubMed  CAS  Google Scholar 

  • Boström K, Riemann L, Zweifel U, Hagström A (2007) Nodularia sp. nifH gene transcripts in the Baltic Sea proper. J Plankton Res 29:391–399

    Article  Google Scholar 

  • Briand E, Gugger M, Francois J-C, Bernard C, Humbert JF, Quiblier C (2008) Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (Cyanobacterium) population. Appl Environ Microbiol 74:3839–3848

    Article  PubMed  CAS  Google Scholar 

  • Briand E, Escoffier N, Straub C, Sabart M, Quiblier C, Humbert J (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J 3:419–429

    Article  PubMed  CAS  Google Scholar 

  • Chorus I, Bartram J (1999) A guide to their public health consequences, monitoring and management. In: Toxic cyanobacteria in water. WHO and E & SPON/Chapman & Hall, London, 416 pp

  • Christiansen G, Fastner J, Erhard M, Borner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572

    Article  PubMed  CAS  Google Scholar 

  • Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. BioTechniques 34:790–802

    PubMed  CAS  Google Scholar 

  • Dai R, Liu H, Qu J, Zhao X, Ru J, Hou Y (2008) Relationship of energy charge and toxin content of Microcystis aeruginosa in nitrogen-limited or phosphorous-limited cultures. Toxicon 51:649–658

    Article  PubMed  CAS  Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins—occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17

    Article  PubMed  CAS  Google Scholar 

  • Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme J, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  CAS  Google Scholar 

  • Furukawa K, Noda N, Tsuneda S, Saito T, Itayama T, Inamori Y (2006) Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase a gene. J Biosci Bioeng 102:90–96

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel F (2008) Molecular ecology and environmental genomics of cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics, evolution. Caister Academic Press, Norfolk, pp 59–87

    Google Scholar 

  • Giglio S, Monis PT, Saint CP (2003) Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real‐time multiplex PCR. Nucleic Acids Res 31:e136

    Article  PubMed  Google Scholar 

  • Gonzalez-Escalona N, Fey A, Hofle MG, Espejo RT, Guzman C (2006) Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but non-culturable state and starvation in response to cold shock. Environ Microbiol 8:658–666

    Article  PubMed  CAS  Google Scholar 

  • Ha JH, Hidaka T, Tsuno H (2009) Quantification of toxic Microcystis and evaluation of its dominance ratio in blooms using real-time PCR. Environ Sci Technol 43:812–818

    Article  PubMed  CAS  Google Scholar 

  • Harada K-i, Ohtani I, Iwamoto K, Suzuki M, Watanabe M, Watanabe M, Terao K (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32:73–84

    Article  PubMed  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

  • Heresztyn T, Nicholson BC (1997) Nodularin concentrations in lakes Alexandrina and Albert, South Australia, during a bloom of the cyanobacterium (Blue-Green alga) Nodularia spumigena and degradation of the toxin. Environ Toxicol Water Qual 12:273–282

    Article  CAS  Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280

    Article  PubMed  CAS  Google Scholar 

  • Hotto AM, Satchwell MF, Berry DL, Gobler CJ, Boyer GL (2008) Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae 7:671–681

    Article  CAS  Google Scholar 

  • Huisman J, Hulot F (2005) Population dynamics of harmful cyanobacteria. In: Huisman J, Matthijs H, Visser P (eds) Harmful cyanobacteria. Springer, Netherlands, pp 143–176

    Chapter  Google Scholar 

  • Jonasson S, Vintila S, Sivonen K, El-Shehawy R (2008) Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. FEMS Microbiol Ecol 65:31–39

    Article  PubMed  CAS  Google Scholar 

  • Kaebernick M, Neilan BA, Borner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    Article  PubMed  CAS  Google Scholar 

  • Kardinaal WEA, Janse I, Kamst-Van Agterveld M, Meima M, Snoek J, Mur LR, Huisman J, Zwart G, Visser P (2007) Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecol 48:1–12

    Article  Google Scholar 

  • Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan B (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, Kim CK, Ahn TS, Yoo SA, Lee DH (2005) Effects of temperature and light on microcystin synthetase gene transcription in Microcystis aeruginosa. In: On the convergence of bio-information-, environmental-, energy-, space- and nano-technologies, Pts 1 and 2. Key Eng Mater 277–279:606–611

  • Koskenniemi K, Lyra C, Rajaniemi-Wacklin P, Jokela J, Sivonen K (2007) Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73:2173–2179

    Article  PubMed  CAS  Google Scholar 

  • Kurmayer R, Christiansen G (2010) The genetic basis of toxin production in cyanobacteria. Freshw Rev 2:31–50

    Google Scholar 

  • Kurmayer R, Kutzenberger T (2003) Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:6723–6730

    Article  PubMed  CAS  Google Scholar 

  • Kurmayer R, Christiansen G, Chorus I (2003) The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. Appl Environ Microbiol 69:787–795

    Article  PubMed  CAS  Google Scholar 

  • Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Jang MH, Kim HS, Yoon BD, Oh HM (2000) Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage. J Appl Microbiol 89:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lehman P, Boyer G, Satchwell M, Waller S (2008) The influence of environmental conditions on the seasonal variation of Microcystis cell density and microcystins concentration in San Francisco Estuary. Hydrobiologia 600:187–204

    Article  CAS  Google Scholar 

  • Li R, Carmichael WW, Brittain S, Eaglesham G, Shaw G, Liu Y, Watanabe M (2001a) First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (cyanobacteria). J Phycol 37:1121–1126

    Article  CAS  Google Scholar 

  • Li R, Carmichael WW, Brittain S (2001b) Isolation and identification of the cyanotoxin. In: Eaglesham G, Shaw G, Mahakhant N, Noparatnaraporn N, Yongmanitchai W, Kaya K, Watanabe M (eds) Cylindrospermopsin and deoxy-cylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (Cyanobacteria). Toxicon 39:973–980

  • Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR methods and appl 4:357–362

    CAS  Google Scholar 

  • Long BM, Jones GJ, Orr PT (2001) Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol 67:278–283

    Article  PubMed  CAS  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S et al (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  PubMed  CAS  Google Scholar 

  • Méjean A, Mann Sp, Maldiney T et al (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by l-proline. J Am Chem Soc 131:7512–7513

    Article  PubMed  Google Scholar 

  • Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74:716–722

    Article  PubMed  CAS  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    PubMed  CAS  Google Scholar 

  • Moffitt MC, Neilan BA (2004) Characterization of the Nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362

    Article  PubMed  CAS  Google Scholar 

  • Neilan BA, Dittmann E, Rouhiainen L et al (1999) Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 181:4089–4097

    PubMed  CAS  Google Scholar 

  • Neilan BA, Saker ML, Fastner J, Törökné A, Burns BP (2003) Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol Ecol 12:133–140

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada KI, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529

    PubMed  CAS  Google Scholar 

  • Okello W, Ostermaier V, Portmann C, Gademann K, Kurmayer R (2010) Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Res 44:2803–2814

    Article  PubMed  CAS  Google Scholar 

  • Orr PT, Rasmussen JP, Burford MA, Eaglesham GK, Lennox SM (2010) Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae 9:243–254

    Article  CAS  Google Scholar 

  • Ostermaier V, Kurmayer R (2010) Application of Real-Time PCR to estimate toxin production by the cyanobacterium Planktothrix sp. Appl Environ Microbiol 76:3495–3502

    Article  PubMed  CAS  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  • Pearson LA, Neilan BA (2008) The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr Opin Biotechnol 19:281–288

    Article  PubMed  CAS  Google Scholar 

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs 8:1650–1680

    Article  PubMed  CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    PubMed  CAS  Google Scholar 

  • Preußel K, Stüken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47:156–162

    Article  PubMed  Google Scholar 

  • Rapala J, Sivonen K, Lyra C, Niemela S (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    PubMed  CAS  Google Scholar 

  • Rasmussen JP, Giglio S, Monis PT, Campbell RJ, Saint CP (2008) Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. J Appl Microbiol 104:1503–1515

    Article  PubMed  CAS  Google Scholar 

  • Rinta-Kanto JM, Ouellette AJA, Boyer GL et al (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol 39:4198–4205

    Article  PubMed  CAS  Google Scholar 

  • Rinta-Kanto JM, Konopko EA, DeBruyn JM et al (2009) Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 8:665–673

    Article  CAS  Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer BL et al (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena Strain 90. Appl Environ Microbiol 70:686–692

    Article  PubMed  CAS  Google Scholar 

  • Sabart M, Pobel D, Briand E et al (2010) Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76:4750–4759

    Article  PubMed  CAS  Google Scholar 

  • Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Toxicol 16:413–421

    Article  PubMed  CAS  Google Scholar 

  • Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80

    Article  CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L et al (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10:2476–2483

    Article  PubMed  CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L et al (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology 19:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K (2010) Development of a chip assay and qPCR for detecting microcystin synthetase gene E expression. Appl Environ Microbiol 76:3797–3805

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K (2008) Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria. Adv Exp Med Biol 619:539–557

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics, evolution. Caister Academic Press, Norfolk, pp 159–197

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Bartram ICaJ (ed) Toxic cyanobacteria in wter: a guide to their public health consequences, monitoring, management. E & FN Spoon, London, pp 55–71

    Google Scholar 

  • Sivonen K, Kononen K, Carmichael WW et al (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microbiol 55:1990–1995

    PubMed  CAS  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  PubMed  CAS  Google Scholar 

  • Spoof L, Berg KA, Rapala J et al (2006) First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21:552–560

    Article  PubMed  CAS  Google Scholar 

  • Steunou A, Jensen SI, Brecht E et al (2008) Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. ISME J 2:364–378

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  PubMed  CAS  Google Scholar 

  • Tillett D, Dittmann E, Erhard M et al (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    Article  PubMed  CAS  Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818

    Article  PubMed  CAS  Google Scholar 

  • Tonk L, Visser PM, Christiansen G et al (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71:5177–5181

    Article  PubMed  CAS  Google Scholar 

  • Utkilen H, Gjolme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800

    PubMed  CAS  Google Scholar 

  • Vaitomaa J, Rantala A, Halinen K et al (2003) Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in Lakes. Appl Environ Microbiol 69:7289–7297

    Article  PubMed  CAS  Google Scholar 

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22:130–138

    PubMed  CAS  Google Scholar 

  • Ye W, Liu X, Tan J, Li D, Yang H (2009) Diversity and dynamics of microcystin–producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8:637–644

    Article  CAS  Google Scholar 

  • Yoshida M, Yoshida T, Takashima Y, Hosoda N, Hiroishi S (2007) Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol Lett 266:49–53

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Yoshida T, Kashima A et al (2008) Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl Environ Microbiol 74:3269–3273

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang D, Li W et al (2003) A novel real‐time quantitative PCR method using attached universal template probe. Nucleic Acids Res 31:e123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Vasconcelos.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, A., Vasconcelos, V. Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics. Arch Microbiol 193, 615–627 (2011). https://doi.org/10.1007/s00203-011-0724-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0724-7

Keywords

Navigation