Skip to main content
Log in

Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Inhibitor studies and mutant analysis revealed a C30 pathway via 4,4′-diapophytoene and 4,4′-diaponeurosporene to 4,4′-diaponeursoporene-4-oic acid esters related to staphyloxanthin in Halobacillus halophilus. Six genes may be involved in this biosynthetic pathway and could be found in two adjacent gene clusters. Two genes of this pathway could be functionally assigned by functional pathway complementation as a 4,4′-diapophytoene synthase and a 4,4′-diapophytoene desaturase gene. These genes were organized in two operons together with two putative oxidase genes, a glycosylase and an acyl transferase ortholog. Pigment mutants were obtained by chemical mutagenesis. Carotenoid analysis showed that a white mutant accumulated 4,4′-diapophytoene due to a block in desaturation. In a yellow mutant carotenogenesis was blocked at the stage of 4,4′-diaponeurosporene and in an orange mutant at the stage of 4,4′-diaponeurosporene-4-oic acid. The protective function of these pigments could be demonstrated for H. halophilus after inhibition of carotenoid synthesis by initiation of oxidative stress. A degree of oxidative stress which still allowed 50% growth of carotenogenic cells resulted in the death of the cells devoid of colored carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aasen AJ, Francis GW, Liaaen-Jensen S (1969) Bacterial carotenoids XXIX. The carotenoids of two yellow Halophilic cocci—including a new glycosidic methyl apo-lycopenoate. Acta Chem Scan 23:4–14

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipmann DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Britton G (1988) Biosynthesis of carotenoids. In: Goodwin T (ed) Plant pigments. Academic Press, London, pp 133–182

    Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    PubMed  CAS  Google Scholar 

  • Clauditz A, Resch A, Wieland KP, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953

    Article  PubMed  CAS  Google Scholar 

  • Claus D, Fahmy F, Rolf HF, Tosunoglu N (1983) Sporosarcina halophila sp. nov., an obligate slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506

    Google Scholar 

  • Cho YH, Lee EJ, Roe JH (2000) A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol Microbiol 35:150–160

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann A-B, Müller V (1999) Chloride dependence of endospore germination in Halobacillus halophilus. Arch Microbiol 172:264–267

    Article  PubMed  CAS  Google Scholar 

  • Duc LH, Fraser PD, Tam NKM, Cutting SM (2006) Carotenoids present in halotolerant Bacillus spore formers. FEMS Microbiol Lett 255:215–224

    Article  CAS  Google Scholar 

  • Goodwin TW (1980) The biochemistry of the carotenoids, vol. 1. Chapman & Hall, New York

  • Fernández-Gonzalez B, Sandmann G, Vioque A (1997) A new type of asymmetrically acting β-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp PCC 6803. J Biol Chem 272:9728–9733

    Article  PubMed  Google Scholar 

  • Fong NJC, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Norgård S, Liaaen-Jensen S (1970) Bacterial carotenoids. 31. C50-carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin. Acta Chem Scand 24:2169–2182

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Heo YJ, Lee JK, Cho YH (2005) KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect Immun 73:4399–4403

    Article  PubMed  CAS  Google Scholar 

  • Lutnaes BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Marshall JH, Wilmoth GJ (1981) Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol 147:900–913

    PubMed  CAS  Google Scholar 

  • Moore MM, Breeedveld MW, Autor AP (1989) The role of carotenoids in preventing oxidative damage in pigmented yeast, Rhodotorula mucilaginosa. Arch Biochim Biophys 270:419–431

    Article  CAS  Google Scholar 

  • Müller V, Saum S (2005) The chloride regulon of Halobacillus halophilus: a novel regulatory network for salt perception and signal transduction in bacteria. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 303–310

    Google Scholar 

  • Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcsu aureus. J Biol Chem 280:32493–32498

    Article  PubMed  CAS  Google Scholar 

  • Raisig A, Sandmann G (1999) Catalytic properties of an enzyme from the C-30 carotenoid pathway of Staphylococcus aureaus. J Bacteriol 181:6184–6187

    PubMed  CAS  Google Scholar 

  • Raisig A, Sandmann G (2001) Functional properties of diapophytoene and related desaturases of C-30 and C-40 carotenoid biosynthetic pathways. Biochim Biophys Acta 1533:164–170

    PubMed  CAS  Google Scholar 

  • Roeßler M, Müller V (1998) Quantitative and physiological analyses of chloride dependence of growth of Halobacillus halophilus. App Environ Microbiol 64:3813–3817

    Google Scholar 

  • Roeßler M, Müller V (2001) Chloride dependence of glycine betaine transport in Halobacillus halophilus. FEBS Lett 489:125–128

    Article  PubMed  Google Scholar 

  • Saito T, Terato H, Yamamoto O (1994) Pigments of Rubrobacter radiotolerans. Arch Microbiol 162:414–421

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sandmann G, Misawa N (1992) New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Microbiol Lett 90:253–258

    Article  CAS  Google Scholar 

  • Sandmann G, Fraser PD (1993) Differential inhibition of phytoene desaturase from diverse origins and analysis of resistant cyanobacterial mutants. Z Naturforsch 48c:307–311

    Google Scholar 

  • Sandmann G, Zhu C, Krubasik P, Fraser PD (2006) The biotechnological potential of the al-2 gene from Neurospra crassa for the production of monocyclic keto hydroxy carotenoids. Biochim Biophys Acta 1761:1085–1092

    PubMed  CAS  Google Scholar 

  • Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815

    Article  PubMed  CAS  Google Scholar 

  • Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer K-H (1996) Halobacillus gen. nov., with description of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496

    Article  Google Scholar 

  • Steiger S, Sandmann G (2004) Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnol Lett 26:813–817

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Schenzle A, Odom JM, Cheng Q (2005) Novel carotenoid oxidase involved in biosynthesis of 4, 4-diapolycopene dialdehyde. Appl Environ Microbiol 71:3294–3301

    Article  PubMed  CAS  Google Scholar 

  • Taylor RF, Davies BH (1983) The triterpenoid carotenoids and related terpenoids in Staphylococcus aureus 209P. Can J Biochem Cell Biol 91:892–905

    Article  Google Scholar 

  • Taylor RF (1984) Bacterial triterpenoids. Microbiol Rev 48:181–198

    PubMed  CAS  Google Scholar 

  • Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, Poralla K, Götz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4, 4 diaponeurosporene of Staphylococcus aureus. J Bacteriol 176:7719–7726

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Woodall AA, Britton G, Jackson MJ (1997) Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1336:575–586

    PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama A, Sandmann G, Hoshino T, Adachi K, Sakai M, Shizuri Y (1995) Thermozeaxanthins, new carotenoid-glycoside esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 36:4901–4904

    CAS  Google Scholar 

  • Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a fellowship of from the Marianne und Dr. Fritz Walter Fischer-Stiftung to S. Köcher, the Förderfond der Goethe Universität Frankfurt and grant FP7-KBBE-2007-207948 by the European Commission to G. Sandmann. Due thanks are expressed to Dr. P. D. Fraser, Royal Holloway, University of London for the mass analysis. We are grateful to Dr. Q. Cheng, DuPont de Nemours, Wilmington, USA for providing plasmidspDCQ150, 166 and 177 and to Dr. F. Götz, Universität Tübingen, Germany for providing transgenic Staphylococcus carnosus with the carotenogenic gene cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Sandmann.

Additional information

Communicated by Ercko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köcher, S., Breitenbach, J., Müller, V. et al. Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus . Arch Microbiol 191, 95–104 (2009). https://doi.org/10.1007/s00203-008-0431-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0431-1

Keywords

Navigation