Skip to main content
Log in

A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A moderately psychrophilic purple non-sulfur bacterium, Rhodoferax antarcticus strain Fryx1, is described. Strain Fryx1 was isolated from the water column under the ice of the permanently frozen Lake Fryxell, Antarctica. Cells of Fryx1 are long thin rods and contain gas vesicles, the first report of such structures in purple non-sulfur bacteria. Gas vesicles are clustered at 2–4 sites per cell. Surprisingly, the 16S rRNA gene sequence of strain Fryx1 is nearly identical to that of Rfx. antarcticus strain AB, a short, vibrio-shaped phototroph isolated from an Antarctic microbial mat. Although showing physiological parallels, strains AB and Fryx1 differ distinctly in their morphology and absorption spectra. DNA–DNA hybridization shows that the genomes of strains AB and Fryx1 are highly related, yet distinct. We conclude that although strains AB and Fryx1 may indeed be the same species, their ecologies are quite different. Unlike strain AB, strain Fryx1 has adapted to a planktonic existence in the nearly freezing water column of Lake Fryxell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achenbach LA, Carey JR, Madigan MT (2001) Photosynthesis and phylogenetic primers for the detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67:2922–2926

    Article  CAS  PubMed  Google Scholar 

  • APHA (1971) Standard methods for the examination of water and wastewater, 13th edn. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C., pp 291–293

    Google Scholar 

  • Burke CM, Burton HR (1988a) The ecology of photosynthetic bacteria in Burton Lake, Vestfold Hills, Antarctica. Hydrobiologia 165:1–11

    CAS  Google Scholar 

  • Burke CM, Burton HR (1988b) Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia 165:13–23

    CAS  Google Scholar 

  • Cohen-Bazire G, Kunisawa R, Pfennig N (1969) Comparative study of the structure of gas vacuoles. J Bacteriol 100:1049–1106

    CAS  PubMed  Google Scholar 

  • Gemerden H van, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85

    Google Scholar 

  • Hansen TA, Gemerden H van (1972) Sulfide utilization by purple nonsulfur bacteria. Arch Microbiol 86:49–56

    CAS  Google Scholar 

  • Hiraishi A, Hoshimo Y, Satoh T (1991) Rhodoferax fermentans gen. nov., and sp. nov., a phototrophic purple nonsulfur bacteria previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155:330–336

    Google Scholar 

  • Howard-Williams C, Scharwz A-M, Priscu JC (1998) Optical properties of the McMurdo Dry Valley Lakes, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, D.C., pp 189–203

    Google Scholar 

  • Jung DO, Nichols DB, Karr EA, Achenbach LA, Madigan MT (2003) A gas-vesiculate purple nonsulfur bacterium from Lake Fryxell, Antarctica. Abstr Gen Meet ASM, Washington, D.C.

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  CAS  PubMed  Google Scholar 

  • Lizotte MP, Priscu JC (1998) Pigment analysis of the distribution, succession, and fate of phytoplankton in the McMurdo Dry Valley lakes of Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, D.C., pp 229–239

    Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111

    Google Scholar 

  • Madigan MT (1998) Isolation and characterization of psychrophilic purple bacteria from Antarctica. In: Peschek GA, Löffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Plenum, New York, pp 699–706

    Google Scholar 

  • Madigan MT (2003) Anoxygenic phototrophs from extreme environments. Photosynth Res 76:157–171

    Article  CAS  Google Scholar 

  • Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus, sp. nov. a moderately psychrophilic purple nonsulfur bacterium from an Antarctic microbial mat. Arch Microbiol 173:269–277

    Google Scholar 

  • Matsumoto GI (1993) Geochemical features of the McMurdo Dry Valley lakes, Antarctica. Antarct Res Ser 59:95–118

    Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K, Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction center of purple bacteria. J Mol Evol 45:131–136

    CAS  PubMed  Google Scholar 

  • Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeochathratiforme (green sulfur bacteria). Arch Microbiol 157:29–37

    Google Scholar 

  • Pfennig N, Cohen-Bazire G (1967) Some properties of the green bacterium Pelodictyon clathratiforme. Arch Mikrobiol 59:226–236

    CAS  PubMed  Google Scholar 

  • Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1635–1709

    Google Scholar 

  • Roselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Google Scholar 

  • Schlegel HG, Pfennig N (1961) Die anreicherungskultur einiger Schwefelpurpurbakterien. Arch Mikrobiol 38:1–39

    Google Scholar 

  • Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo dry valleys lakes. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, D.C., pp 153–187

    Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids: applications in biology. Kluwer, Dordrecht, pp 39–69

    Google Scholar 

  • Takaichi S, Jung DO, Madigan MT (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis. Photosynth Res 67:207–217

    Article  CAS  Google Scholar 

  • Tayeh MA, Madigan MT (1987) Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure. J Bacteriol 169:4196–4202

    CAS  PubMed  Google Scholar 

  • Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1–32

    CAS  PubMed  Google Scholar 

  • Walsby AE (1975) Gas vesicles. Annu Rev Plant Physiol 26:427–439

    Article  CAS  Google Scholar 

  • Walsby AE (1981) Cyanobacteria: planktonic gas-vacuolated forms. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Heidelberg Berlin New York, pp 224–235

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    Google Scholar 

  • Walsby AE, Eichelberger HH (1968) The fine structure of gas vacuoles released from cells of the blue-green algae Anabaena flos-aquae. Arch Mikrobiol 60:76–83

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grants OPP9809195, OPP0085481, and MCB0237567. Raytheon Polar Services, Petroleum Helicopters, Inc., and W. Matthew Sattley are acknowledged for technical assistance in the Antarctic. Special thanks go to Aharon Oren (Hebrew University Jerusalem) for helpful discussions, Steven Schmitt (IMAGE, SIUC) for help with electron microscopy, and Brian Nichols for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Madigan.

Additional information

Dedicated to Prof. Dr. Hans Günter Schlegel on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, D.O., Achenbach, L.A., Karr, E.A. et al. A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182, 236–243 (2004). https://doi.org/10.1007/s00203-004-0719-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0719-8

Keywords

Navigation