Skip to main content

Advertisement

Log in

Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications

  • Short Communication
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 14 February 2012

Abstract

Summary

Here we report 41 novel mutations in the TCIRG1 gene that is responsible for the disease in more than 50% of ARO patients. The characterisation of mutations in this gene might be useful in the process of drug design for osteoporosis treatment.

Introduction

Autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder due to reduced bone resorption by osteoclasts. In this process, a crucial role is played by the proton pump V-ATPase. Biallelic mutations in the TCIRG1 gene, encoding for the a3 subunit of this pump, are responsible for more than one half of ARO patients.

Methods

Patients with a clinical diagnosis of ARO have been collected for 7 years and mutation analysis of the TCIRG1 gene was performed using direct DNA sequencing of PCR-amplified exons according to both a standard protocol and a modified one.

Results

We report here 41 novel mutations identified in 67 unpublished patients, all with biallelic mutations. In particular, we describe two novel large genomic deletions and two splice site mutations in the 5′ UTR of the TCIRG1 gene, in patients previously classified as mono-allelic.

Conclusions

Our data highlights the importance of two large genomic deletions and mutations in the 5′ UTR with respect to patient management and, more critically, to prenatal diagnosis. With the present work, we strongly contribute to the molecular dissection of TCIRG1-deficient ARO and identify several protein residues which are fundamental for proton pump function and could thus be the target of future drugs designed to inhibit osteoclast resorptive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  PubMed  CAS  Google Scholar 

  2. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Article  PubMed  CAS  Google Scholar 

  3. Heinemann T, Bulwin GC, Randall J, Schnieders B, Sandhoff K, Volk HD, Milford E, Gullans SR, Utku N (1999) Genomic organization of the gene coding for TIRC7, a novel membrane protein essential for T cell activation. Genomics 57:398–406

    Article  PubMed  CAS  Google Scholar 

  4. Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. Biochemistry 49:4715–4723

    Article  PubMed  CAS  Google Scholar 

  5. Nyman JK, Väänänen HK (2010) A rationale for osteoclast selectivity of inhibiting the lysosomal V-ATPase a3 isoform. Calcif Tissue Int 87:273–283

    Article  PubMed  CAS  Google Scholar 

  6. Yuan FL, Li X, Lu WG, Li CW, Li JP, Wang Y (2010) The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis. Mol Biol Rep 37:3561–3566

    Article  PubMed  CAS  Google Scholar 

  7. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, Dupuis-Girod S, Ellis I, Etzioni A, Fasth A, Fisher A, Gerritsen B, Gulino V, Horwitz E, Klamroth V, Lanino E, Mirolo M, Musio A, Matthijs G, Nonomaya S, Notarangelo LD, Ochs HD, Superti Furga A, Valiaho J, van Hove JL, Vihinen M, Vujic D, Vezzoni P, Villa A (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773

    Article  PubMed  CAS  Google Scholar 

  8. Pangrazio A, Caldana ME, Sobacchi C, Panaroni C, Susani L, Mihci E, Cavaliere ML, Giliani S, Villa A, Frattini A (2009) Characterization of a novel Alu-Alu recombination-mediated genomic deletion in the TCIRG1 gene in five osteopetrotic patients. J Bone Miner Res 24:162–167

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Toei M, Forgac M (2008) Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification. J Biol Chem 283:20696–20702

    Article  PubMed  CAS  Google Scholar 

  10. Susani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A, Frattini A, Pagani F (2004) TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 24:225–235

    Article  PubMed  CAS  Google Scholar 

  11. Partridge AW, Therien AG, Deber CM (2004) Missense mutations in transmembrane domains of proteins: phenotypic propensity of polar residues for human disease. Proteins 54:648–656

    Article  PubMed  CAS  Google Scholar 

  12. Bliznetz EA, Tverskaya SM, Zinchenko RA, Abrukova AV, Savaskina EN, Nikulin MV, Kirillov AG, Ginter EK, Polyakov AV (2009) Genetic analysis of autosomal recessive osteopetrosis in Chuvashiya: the unique splice site mutation in TCIRG1 gene spread by the founder effect. Eur J Hum Genet 17:664–672

    Article  PubMed  CAS  Google Scholar 

  13. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  PubMed  CAS  Google Scholar 

  14. Michigami T, Kageyama T, Satomura K, Shima M, Yamaoka K, Nakayama M, Ozono K (2002) Novel mutations in the a3 subunit of vacuolar H(+)-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone 30:436–439

    Article  PubMed  CAS  Google Scholar 

  15. Scimeca JC, Quincey D, Parrinello H, Romatet D, Grosgeorge J, Gaudray P, Philip N, Fischer A, Carle GF (2003) Novel mutations in the TCIRG1 gene encoding the a3 subunit of the vacuolar proton pump in patients affected by infantile malignant osteopetrosis. Hum Mutat 21:151–157

    Article  PubMed  CAS  Google Scholar 

  16. Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A (2003) Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162:57–68

    Article  PubMed  CAS  Google Scholar 

  17. Mazzolari E, Forino C, Razza A, Porta F, Villa A, Notarangelo LD (2009) A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol 84:473–479

    Article  PubMed  CAS  Google Scholar 

  18. Phadke SR, Fischer B, Gupta N, Ranganath P, Kabra M, Kornak U (2010) Novel mutations in Indian patients with autosomal recessive infantile malignant osteopetrosis. Indian J Med Res 131:508–514

    PubMed  CAS  Google Scholar 

  19. Yuan P, Yue Z, Sun L, Huang W, Hu B, Yang Z, Hu Y, Xiao H, Shi H, Zhou Q, Wang Y (2011) Novel mutation of TCIRG1 and clinical pictures of two infantile malignant osteopetrosis patients. J Bone Miner Metab 29:251–256

    Article  PubMed  Google Scholar 

  20. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C (2009) Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 84:1–12

    Article  PubMed  CAS  Google Scholar 

  21. Pangrazio A, Pusch M, Caldana E, Frattini A, Lanino E, Tamhankar PM, Phadke S, Lopez AG, Orchard P, Mihci E, Abinun M, Wright M, Vettenranta K, Bariae I, Melis D, Tezcan I, Baumann C, Locatelli F, Zecca M, Horwitz E, Mansour LS, Van Roij M, Vezzoni P, Villa A, Sobacchi C (2010) Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat 31:E1071–E1080

    Article  PubMed  Google Scholar 

  22. Henriksen K, Bollerslev J, Everts V, Karsdal M (2011) Osteoclast activity and subtypes as a function of physiology and pathology—implications for future treatments of osteoporosis. Endocr Rev 32:31–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione Cariplo grant to CS, Telethon Foundation (grant GGP10116) to CS, by Ministero della Salute, convenzione 47 (role of new inflammatory molecules in pregnancy pathologies and in maternal neonatal health) to PV, by E-rare project JTC 2007 OSTEOPETR to AV, by PRIN Project 200999KRFW-002 to PV and by Giovani Ricercatori grant (GR-2008-1134625) to CS. The technical assistance of Dario Strina is acknowledged.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Villa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pangrazio, A., Caldana, M.E., Iacono, N.L. et al. Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications. Osteoporos Int 23, 2713–2718 (2012). https://doi.org/10.1007/s00198-011-1878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1878-5

Keywords

Navigation