Skip to main content
Log in

Cortical and trabecular architecture are altered in postmenopausal women with fractures

  • Personal View
  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anonymous (1993) Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  2. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60

    Article  PubMed  CAS  Google Scholar 

  3. Croucher PI, Garrahan NJ, Compston JE (1994) Structural mechanisms of trabecular bone loss in primary osteoporosis: specific disease mechanism or early ageing? Bone Miner 25:111–121

    Article  PubMed  CAS  Google Scholar 

  4. Kleerekoper M, Villanueva AR, Stanciu J, Sudhaker RD, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Article  PubMed  CAS  Google Scholar 

  5. Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF (1990) A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner 11:217–35

    Article  PubMed  CAS  Google Scholar 

  6. Recker RR (1993) Architecture and vertebral fracture. Calcif Tissue Int 53:S139–42

    Article  PubMed  Google Scholar 

  7. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–15

    Article  PubMed  CAS  Google Scholar 

  8. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433

    Article  PubMed  Google Scholar 

  9. Boutroy S, van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD (2008) Finite element analyses based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 23:392–399

    Article  PubMed  Google Scholar 

  10. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluatedby DXA at different skeletal sites in women: the OFELY Cohort. J Bone Miner Res 12:683–690

    Article  PubMed  CAS  Google Scholar 

  11. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–349

    Article  PubMed  CAS  Google Scholar 

  12. Ritzel H, Amling M, Posl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12:89–95

    Article  PubMed  CAS  Google Scholar 

  13. Foldes J, Parfitt AM, Shih MS, Rao DS, Kleerekoper M (1991) Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Miner Res 6:759–766

    Article  PubMed  CAS  Google Scholar 

  14. Oleksik A, Ott SM, Vedi S, Bravenboer N, Compston J, Lips P (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  PubMed  CAS  Google Scholar 

  15. Schneider P, Reiners C, Cointry GR, Capozza RF, Ferretti JL (2001) Bone quality parameters of the distal radius as assessed by pQCT in normal and fractured women. Osteoporos Int 12:639–646

    Article  PubMed  CAS  Google Scholar 

  16. MacIntyre NJ, Adachi JD, Webber CE (2003) In vivo measurement of apparent trabecular bone structure of the radius in women with low bone density discriminates patients with recent wrist fracture from those without fracture. J Clin Densitometry 6:35–43

    Article  Google Scholar 

  17. Gordon CL, Lang TF, Augat P, Genant HK (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8:317–325

    Article  PubMed  CAS  Google Scholar 

  18. Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T, Orimo H (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836

    Article  PubMed  Google Scholar 

  19. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–239

    Article  PubMed  CAS  Google Scholar 

  20. Laib A, Nevitt DC, Lu Y, Majumdar S (2002) New model independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136

    Article  PubMed  CAS  Google Scholar 

  21. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sornay-Rendu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sornay-Rendu, E., Boutroy, S., Munoz, F. et al. Cortical and trabecular architecture are altered in postmenopausal women with fractures. Osteoporos Int 20, 1291–1297 (2009). https://doi.org/10.1007/s00198-009-1008-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1008-9

Keywords

Navigation