Skip to main content
Log in

Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

  • Bone Quality Seminars: Ultrastructure
  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Currey JD (2005) Hiearchies in biomineral structures. Science 309:253

    Article  PubMed  CAS  Google Scholar 

  2. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505

    Article  CAS  Google Scholar 

  3. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, reviews in mineralogy and geochemistry, vol 48. Mineral Society of America, Washington DC, pp 427–453

    Google Scholar 

  4. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  5. Guinier A (1956) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dunod, Paris

    Google Scholar 

  6. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975

    Article  PubMed  CAS  Google Scholar 

  7. McKelvy ML, Britt TR, Davis BL, Gillie JK, Graves FB, Lentz LA (1998) Infrared spectroscopy. Anal Chem 70:119–177

    Article  Google Scholar 

  8. Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101:1809–1842

    Article  PubMed  CAS  Google Scholar 

  9. Dumas P, Sockalingum GD, Sule-Suso J (2006) Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol 25:40–44

    Article  PubMed  Google Scholar 

  10. Bazin D, Guczi L, Lynch J (2002) Anomalous wide angle X-ray scattering (AWAXS) and heterogeneous catalysis. Appl Catal 226:87–113

    Article  CAS  Google Scholar 

  11. Gouadec G, Ph Colomban (2007) Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53:1–56

    Article  CAS  Google Scholar 

  12. Naray-Szabo S (1930) The structure of apatite (CaF)Ca4(PO4)3. Z. Kristallogr Kristallgeom Kristallphys Kristallchem 75:387–398

    CAS  Google Scholar 

  13. White TJ, Zhi Li D (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallogr B 59:1–16

    Article  PubMed  CAS  Google Scholar 

  14. Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16:583–586

    Article  PubMed  CAS  Google Scholar 

  15. Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602

    Article  PubMed  CAS  Google Scholar 

  16. Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid state NMR spectroscopy. Science 300:1123–1127

    Article  PubMed  CAS  Google Scholar 

  17. Vallet-Regı M, Gonzalez-Calbet MJ (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31

    Article  Google Scholar 

  18. Grynpas MD, Holmyard D (1988) Changes in quality of bone mineral on aging and in disease. Scanning Microsc 2:1045–1054

    PubMed  CAS  Google Scholar 

  19. Kapolos J, Koutsoukos PG (1999) Formation of calcium phosphates in aqueous solutions in the presence of carbonate ions. Langmuir 15:6557–6562

    Article  CAS  Google Scholar 

  20. Santos M, Gonzalez-Diaz PF (1977) A model for B carbonate apatite. Inorg Chem 16:2131–2134

    Article  CAS  Google Scholar 

  21. Elliott JC, Bonel G, Trombe JC (1980) Space group and lattice constants of Ca10 (PO4) 6CO3. J Appl Crystallogr 13:618–621

    Article  CAS  Google Scholar 

  22. Astala R, Stott MJ (2005) First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater 17:4125–4133

    Article  CAS  Google Scholar 

  23. Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J (2000) Structure analysis of a-type carbonate apatite by a single-crystal X-ray diffraction method. J Solid State Chem 155:292–297

    Article  CAS  Google Scholar 

  24. Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Rietveld refinements and spectroscopic studies of the Ca-deficient apatite. Biomaterials 26:1317–1327

    Article  PubMed  CAS  Google Scholar 

  25. Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M (2007) Heavy elements in urinary stones. Urol Res 35:179–184

    Article  PubMed  CAS  Google Scholar 

  26. Xu Y, Shawartz FW, Traina SJ (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480

    Article  CAS  Google Scholar 

  27. Lusvardi G, Menabue L, Saladini M (2002) Reactivity of biological and synthetic HAP towards Zn(II) ion, solid–liquid investigations. J Mater Sci Mater Med 13:91–98

    Article  PubMed  CAS  Google Scholar 

  28. Cheung CW, Porter JF, MacKay G (2002) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18:650–656

    Article  CAS  Google Scholar 

  29. Sheha RR (2007) Sorption behavior of Zn(II) ions on synthesized hydroxyapatites. J Colloif Interface Sci 310:18–26

    Article  CAS  Google Scholar 

  30. Cuisinier FJG, Steuer P, Voegel JC, Apfelbaum F, Mayer I (1995) Structural analyses of carbonate-containing apatite samples related to mineralized tissues. J Mater Sci Mater Med 6:85–89

    Article  CAS  Google Scholar 

  31. Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Materials Science and Engineering C 27:198–205

    Article  CAS  Google Scholar 

  32. Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Minéralisations biologiques à base de phosphate de calcium. C. R. Pale 3:563–572

    Article  Google Scholar 

  33. Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH (2007) Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem C 111:6398–6404

    Article  CAS  Google Scholar 

  34. Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99:6452–6455

    Article  Google Scholar 

  35. Tseng YH, Mou CY, Chan JCC (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. J Am Chem Soc 128:6909–6918

    Article  PubMed  CAS  Google Scholar 

  36. Lundager-Madsen HE (2008) Influence of foreign metal ions on crystal growth and morphology of brushite and its transformation to octacalcium phosphate and apatite. J Cryst Growth 310:2602–2612

    Article  CAS  Google Scholar 

  37. Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  38. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structure. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  39. Le Bail A, Loüer D (1978) Smoothing and validity of crystallite size distributions from X-ray line profile analysis. J Appl Crystallogr 11:50–55

    Article  Google Scholar 

  40. Powder diffraction file (PDF), International Centre for Diffraction Data, 12 campus Blvd, Newton square, PA 19073-3273, USA, http://www.idd.com.

  41. Bazin DC, Sayers DA, Rehr JJ (1997) Comparison between X-ray absorption spectroscopy, anomalous wide angle X-ray scattering, anomalous small angle X-ray scattering, and diffraction anomalous fine structure techniques applied to nanometer scale metallic clusters. J Phys Chem B 101:11040–11050

    Article  CAS  Google Scholar 

  42. Klug H, Alexander L (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. Wiley, New York

    Google Scholar 

  43. Bacon GE, Goodship AE (2007) The healing process for fractured tibia bones of sheep studied by neutron diffraction. J Appl Crystallogr 40:349–353

    Article  CAS  Google Scholar 

  44. Heidelbach F, Riekel C, Wenk HR (1999) Quantitative texture analysis of small domains with synchrotron radiation X-rays. J Appl Crystallogr 32:841–849

    Article  CAS  Google Scholar 

  45. Hamilton WC (1969) Comparison of X-ray and Neutron diffraction structural results: A study in methods of error analysis. Acta Crystallogr A 25:194–206

    Article  CAS  Google Scholar 

  46. Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213

    Article  PubMed  CAS  Google Scholar 

  47. Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) Neutron scattering for the study of improved bone implants. Phys Rev B Condens Matter 350:E607–E610

    Article  CAS  Google Scholar 

  48. Arcos D, Rodríguez-Carvajal J, Vallet-Regí M (2004) The effect of the silicon incorporation on the hydroxylapatite structure. A neutron diffraction study. Solid State Sc 6:987–994

    Article  CAS  Google Scholar 

  49. Bacon GE, Bacon PJ, Griffiths RK (1979) The orientation of apatite crystals in bone. J Appl Crystallogr 12:99–103

    Article  CAS  Google Scholar 

  50. Cedola A, Mastrogiacomo M, Lagomarsino S, Cancedda R, Giannini C, Guagliardi A, Ladisa M, Burghammer M, Rustichelli F, Komlev V (2007) Orientation of mineral crystals by collagen fibers during in vivo bone engineering: an X-ray diffraction imaging study. Spectrochim Acta B 62:642–647

    Article  Google Scholar 

  51. Zhou H, Burger C, Sics I, Hsiao BS, Chu B, Graham B, Glimcher MJ (2007) Small angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular fish bone. J Appl Crystallogr 40:666–668

    Article  Google Scholar 

  52. Gupta S, Roschger P, Zizak I, Fratzl-Zelman N, Nader A, Klaushofer K, Fratzl P (2003) Mineralized microstructure of calcified avian tendons: a scanning small angle X-ray scattering study. Calcif Tissue Int 72:567–576

    Article  PubMed  CAS  Google Scholar 

  53. Gupta HS, Wagermaier W, Zickler GA, Hartmann J, Funari SS, Roschger P, Wagner HD, Fratzl P (2006) Fibrillar level fracture in bone beyond the yield point. Int J Fract 139:425–436

    Article  Google Scholar 

  54. Almer JD, Stock SR (2005) Micromechanical response of mineral and collagen phases in bone. J Struct Biol 152:14–27

    Article  PubMed  CAS  Google Scholar 

  55. DeMaeyer E, Verbeeck R, Nassens D (1993) Stoichiometry of Na+ and CO 2−3 containing apatites obtained by hydrolysis of monetite. Inorg Chem 32:5709–5714

    Article  CAS  Google Scholar 

  56. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Crystallogr B 52:87–92

    Article  Google Scholar 

  57. Tian T, Jiang D, Zhang J, Lin Q (2008) Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Mat Sci Eng C28:57–63

    Google Scholar 

  58. Marchat D, Bernache-Assolant D, Champion E (2007) Cadmium fixation by synthetic hydroxyapatite in aqueous solution—thermal behavior. J Hazard Mater A139:453–460

    Article  Google Scholar 

  59. Landi E, Sprio S, Sandri M, Celotti G, Tampieri A (2008) Development of Sr and CO 2−3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater 4:656–663

    Article  PubMed  CAS  Google Scholar 

  60. Laperche V, Traina SJ, Gaddam P, Logan TJ (1996) Chemical and mineralogical characterizations of Pb in a contaminated soil: reactions with synthetic apatite. Environ Sci Technol 30:3321–3326

    Article  CAS  Google Scholar 

  61. Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K (2006) Hydrothermal synthesis and crystallographic study of Sr Pb HAP solid solutions. J Eur Ceram Soc 26:509–513

    Article  CAS  Google Scholar 

  62. Tamm T, Peld M (2006) Computational study of cation substitutions in apatites. J Solid State Chem 179:1581–1587

    Article  CAS  Google Scholar 

  63. Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Sr-substituted HAP nanocrystals. Inorg Chim Acta 360:1009–1016

    Article  CAS  Google Scholar 

  64. Sayers DA, Lytle FW, Stern EA (1970) In: Henke BL, Newkirk JB, Mallett GR (eds) Advances in X-ray analysis, vol 13. Plenum, New York, pp 248-271

  65. Bazin D, Rehr JJ (2003) Limits and advantages of XANES for nanometer scale metallic clusters. J Phys Chem B 107:12398–12402

    Article  CAS  Google Scholar 

  66. Harries JE, Hukins DWL, Hasnain SS (1988) Calcium environment in bone mineral determined by EXAFS spectroscopy. Calcif Tissue Int 43:250–253

    Article  PubMed  CAS  Google Scholar 

  67. Harries JE, Hasnain SS, Shah JS (1987) EXAFS study of structural disorder in carbonate-containing hydroxyapatites. Calcif Tissue Int 41:346–350

    Article  PubMed  CAS  Google Scholar 

  68. Eichert D, Salomé M, Banu M, Susini J, Rey C (2005) Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by XAS. Spectrochim Acta B 60:850–858

    Article  Google Scholar 

  69. Liou SC, Chen SY, Lee HY, Bow JS (2004) Structural characterization of nanosized calcium deficient apatite powders. Biomaterials 25:189–196

    Article  PubMed  CAS  Google Scholar 

  70. Eanes ED, Powers L, Costa JL (1981) EXAFS studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium 2:251–262

    Article  CAS  Google Scholar 

  71. Miller RM, Hukins DWL, Hasnain SS, Lagarde P (1981) EXAFS studies of the calcium ion environment in bone mineral and related calcium phosphates. Biochem Biophys Res Com 99:102–106

    Article  PubMed  CAS  Google Scholar 

  72. Holt C, Van Kemenade MJJM, Nelson LS, Hukins DWL, Bailey RT, Harries JE, Hasnain SS, DeBruyn PL (1989) Amorphous calcium phosphate prepared at pH 6 and 6.5. Mater Res Bull 24:55–62

    Article  CAS  Google Scholar 

  73. Nelson LS, Holt C, Harries JE, Hukins DWL (1989) Amorphous calcium phosphates of different composition give very similar EXAFS spectra. Physica B 158:105–106

    Article  CAS  Google Scholar 

  74. Harries JE, Hukins DWL, Holt C, Hasnain SS (1987) Conversion of amorphous calcium phosphate into HAP investigated by EXAFS spectroscopy. J Cryst Growth 84:563–570

    Article  CAS  Google Scholar 

  75. Korbas M, Rotika E, Meyer-Klaucke W, Ryczek J (2004) Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. J Biol Inorg Chem 9:67–76

    Article  PubMed  CAS  Google Scholar 

  76. Sugiyama S, Moriga T, Hayashi H, Moffat JB (2001) Characterization of Ca, Sr, Ba and Pb HAP: X-ray diffraction, photoelectron, EXAFS and MAS NMR spectroscopies. Bull Chem Soc Jpn 74:187–192

    Article  CAS  Google Scholar 

  77. Sery A, Manceau A, Greaves GN (1996) Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am Mineral 81:864–873

    CAS  Google Scholar 

  78. Rokita E, Hermes C, Nolting HF, Ryczek J (1993) Substitution of calcium by Sr within selected calcium phosphates. J Cryst Growth 130:543–552

    Article  CAS  Google Scholar 

  79. Kay MI, Young RA, Posner AS (1964) Crystal structure of HAP. Nature 204:1050–1052

    Article  PubMed  CAS  Google Scholar 

  80. Bazin D, Carpentier X, Traxer O, Thiaudière D, Somogyi A, Reguer A, Waychunas G, Jungers P, Daudon M (2008) Very first tests on SOLEIL regarding the Zn environment in pathological calcifications made of apatite determined by X-ray absorption spectroscopy. J Synchrotron Radiat 15((Pt 5):506–509

    Article  Google Scholar 

  81. Raman CV, Krishnan KS (1928) A new radiation. Indian J Phys 2:387–398

    CAS  Google Scholar 

  82. Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76(1):1–8

    Article  PubMed  CAS  Google Scholar 

  83. Prince KC, Kuepper K, Neumann M, Cooco D, Bondino F, Zangrando M, Zacchigna M, Mateeucci M, Parmigiani F (2004) Resonant Raman X-ray scattering at the S2p edge of iron pyrite. J Phys Condens Matter 16:7397–7404

    Article  CAS  Google Scholar 

  84. Zumbusch A, Holtom GR, Xie XS (1999) Vibrational microscopy using coherent anti-Stokes Raman scattering. Phys Rev Lett 82:4142–4145

    Article  CAS  Google Scholar 

  85. Habelitz S, Marshall GW, Balooch M, Marshall SJ (2002) Nanoindentation and storage of teeth. J Biomech 35:995–998

    Article  PubMed  Google Scholar 

  86. Carden A, Rajachar RM, Morris MD, Kohn DH (2004) Ultrastructure changes accompanying the mechanical deformation of bone tissues: a Raman imaging study. Calcif Tissue Int 72:166–175

    Article  Google Scholar 

  87. Balooch M, Habelitz S, Kinney JH, Marshall SJ, Marshall GW (2008) J Struct Biol 162(3):404–410

    Article  PubMed  CAS  Google Scholar 

  88. Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vibr Spectrosc 38:107–114

    Article  CAS  Google Scholar 

  89. Numata Y, Sakae T, Suwa T, Nakada H, Legeros RZ, Kobayashi K (2008) Qualitative and quantitative evaluation of bone and synthetic calcium phosphates using Raman spectroscopy. Key Eng Mater 361–363:135–138

    Article  Google Scholar 

  90. Morris MD, Carden A, Rajachar RM, Kohn DH (2002) Effects of applied load on bone tissue as observed by Raman spectroscopy. Proc SPIE 4614:47–54

    Article  CAS  Google Scholar 

  91. Penel G, Leroy G, Rey C, Bres C (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  PubMed  CAS  Google Scholar 

  92. Rey C, Collins B, Goehl T, Dickson RI, Glimcher MJ (1989) The carbonate environment in bone mineral. A resolution enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  PubMed  CAS  Google Scholar 

  93. Awonusi A, Morris MD, Tecklenburg MJM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52

    Article  PubMed  CAS  Google Scholar 

  94. Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53:1429–1435

    Article  CAS  Google Scholar 

  95. Sahar ND, Hong SI, Kohn DH (2005) Micro- and nano-structural analyses of damage in bone. Micron 36:617–629

    Article  PubMed  Google Scholar 

  96. Timlin JA, Carden A, Morris MD, Rajachar RM, Kohn DH (2000) Raman spectroscopic markers for fatigue-related bovine bone microdamage. Anal Chem 72:2229–2236

    Article  PubMed  CAS  Google Scholar 

  97. McCreadie BR, Morris MD, Chen TC, Rao DS, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195

    Article  PubMed  CAS  Google Scholar 

  98. Daudon M, Bazin D, Jungers P, André G, Cousson A, Chevallier P, Véron E, Matzen G (2009) Opportunities offered by scanning electron microscopy, powder neutron diffraction and synchrotron radiation mX-ray fluorescence in the study of whewellite kidney stones. J App Cryst 42:109–115

    Article  CAS  Google Scholar 

  99. Bazin D, Daudon M, Chevallier P, Rouzière S, Elkaim E, Thiaudière D, Fayard B, Foy E, Albouy PA, André G, Matzen G, Veron E (2006) Les techniques de rayonnement synchrotron au service de la caractérisation d’objets biologiques : un exemple d’application, les calculs rénaux. Annales de Biologie Clinique 64(2):125–139

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Canizares and Dr. P. Simon regarding Raman spectra and the staff of SOLEIL. This work was supported by the Physics and Chemical Departments of the CNRS.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bazin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazin, D., Chappard, C., Combes, C. et al. Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos Int 20, 1065–1075 (2009). https://doi.org/10.1007/s00198-009-0868-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0868-3

Keywords

Navigation