Skip to main content
Log in

Prediction for multi-index constrained forming limit in shear bending process of Ti-alloy thin-walled tube under differential temperature fields

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Predictions for multi-index constrained forming limits and forming limits of Ti-alloy thin-walled tubes have become key problems urgently in need of solutions in order to improve forming potential in their shear bending processes under differential temperature fields. To address this, a method for predicting this type of forming limits was presented by coupling a thermal-mechanical-coupled finite element model for simulating these bending processes, with an energy model for the tubes’ shear-enforced plastic wrinkling predictions and utilizing the response surface designs. Reliable multi-index response surface models corresponding to the wrinkling, the thinning, and the flattening were developed for these TA2 Ti-alloy tubes’ shear bending processes, and their multi-index constrained forming limits were predicted. This found that forming limits, i.e., the maximum moving die displacements depend on the over-thinning or over-flattening for the present conditions. The smaller the values of the outer corner radius, the smaller both the feasible region ranges of the bending die cavity radius and/or the mandrel diameter and these forming limits. When the value of the outer corner radius is a half of the mandrel diameter and the values of the inner corner radius are from 4 to 6 mm; their feasible region ranges are the maximum. The effects of the feasible region of the bending die cavity radius on these forming limits are larger than the mandrel diameter. The moving die displacements located in the vertexes of their feasible regions are the maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang H, Li H, Zhang ZY, Zhan M, Liu J, Li GJ (2012) Advances and trends on tube bending forming technologies. Chin J Aeronaut 25:1–12. doi:10.1016/S1000-9361(11)60356-7

    Article  Google Scholar 

  2. Li H, Yang H, Liu K (2013) Towards an integrated robust and loop tooling design for tube bending. Int J Adv Manuf Technol 9–12:1303–1318. doi:10.1007/s00170-012-4258-1

    Article  Google Scholar 

  3. Lazarescu L (2013) Effect of internal fluid pressure on quality of aluminum alloy tube in rotary draw bending. Int J Adv Manuf Technol 64:85–91. doi:10.1007/s00170-012-3992-8

    Article  Google Scholar 

  4. Zhang ZY, Yang H, Li H, Tao ZJ (2014) Thermo-mechanical coupled 3D-FEmodeling of heat rotary draw bending for large diameter thin-walled CP-Ti tube. Int J Adv Manuf Technol 72:1187–1203. doi:10.1007/s00170-014-5709-7

    Article  Google Scholar 

  5. Yan J, Yang H, Zhan M, Li H (2010) Forming characteristics of Al-alloy large diameter thin-walled tubes in NC-bending under axial compressive loads. Chin J Aeronaut 23:461–469. doi:10.1016/S1000-9361(09)60242-9

    Article  Google Scholar 

  6. Zeng YS, Li ZQ (2002) Experimental research on the tube push-bending process. J Mater Proc Technol 122:237–240. doi:10.1016/S0924-0136(02)00027-4

    Article  Google Scholar 

  7. Li SH, He J, Cedric Z, Zeng D, Hou B (2014) Bifurcation analysis of forming limits for an orthotropic sheet metal. J Manuf Sci Eng, Trans ASME 135:1–10. doi:10.1115/1.4027757

    Google Scholar 

  8. Li HZ, Wu X, Li GY (2013) Prediction of forming limit diagrams for 22MnB5 in hot stamping process. J Mater Eng Perform 22:2131–2140. doi:10.1007/s11665-013-0491-5

    Google Scholar 

  9. Hashemi R, Madoliat R, Afshar A (2014) Prediction of forming limit diagrams using the modified M-K method in hydroforming of aluminum tubes. Int J Mater Form. doi:10.1007/s12289-014-1207-6

    Google Scholar 

  10. Eyckens P, Bael AV, Houtte PV (2009) Marciniak–Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25:2249–2268. doi:10.1016/j.ijplas.2009.02.002

    Article  Google Scholar 

  11. Butuca MC, Gracioa JJ, Barata RA (2006) An experimental and theoretical analysis on the application of stress-based forming limit criterion. Int J Mech Sci 48:414–429. doi:10.1016/j.ijmecsci.2005.11.007

    Article  Google Scholar 

  12. Sun ZC, Yang H (2007) Study on forming limit and feasibility of tube axial compressive process. J Mater Proc Technol 187–188:292–295. doi:10.1016/j.jmatprotec.2006.11.102

    Article  Google Scholar 

  13. Yang H, Lin Y (2004) Wrinkling analysis for forming limit of tube bending processes. J Mater Process Technol 152:363–369. doi:10.1016/j.jmatprotec.2004.04.410

    Article  Google Scholar 

  14. Liu G, Peng JY, Yuan SJ, Teng BG, Li K (2015) Analysis on critical conditions of sidewall wrinkling for hydroforming of thin-walled Tee-joint. Int J Machin Tools Manuf 97:42–49. doi:10.1016/j.ijmachtools.2015.06.004

    Article  Google Scholar 

  15. Bagheriasl R, Worswick MJ (2015) Formability of AA3003 brazing sheet at elevated temperatures: limiting dome height experiments and determination of forming limit diagrams. Int J Mater Form 8:229–244. doi:10.1007/s12289-014-1162-2

    Article  Google Scholar 

  16. Yang LF, Hu GL, Liu JW (2015) Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path. Int J Adv Manuf Technol 79:793–803. doi:10.1007/s00170-015-6842-7

    Article  Google Scholar 

  17. Sun T, Liang J, Guo X, Ren MD, Wang LZ (2015) Optical measurement of forming limit and formability of Cu/Al clad metals. J Mater Eng Perform 24:1426–1433. doi:10.1007/s11665-015-1435-z

    Article  Google Scholar 

  18. Narayanasamy R, Loganathan C (2006) Study on wrinkling limit of commercially pure aluminium sheet metals of different grades when drawn through conical and tractrix dies. Mater Sci Eng A 419:249–261. doi:10.1016/j.msea.2005.12.026

    Article  Google Scholar 

  19. Li FF, Fu MW, Lin JP, Wang XN (2014) Experimental and theoretical study on the hot forming limit of 22MnB5 steel. Int J Adv Manuf Technol 71:297–306. doi:10.1007/s00170-013-5468-x

    Article  Google Scholar 

  20. Chu XR, Leotoing L, Guines D, Ragneau E (2015) Effect of material thermo-viscoplastic modeling on the prediction of forming limit curves of aluminum alloy 5086. J Mater Eng Perform 24:3459–3470. doi:10.1007/s11665-015-1643-6

    Article  Google Scholar 

  21. Xiao YH, Liu YL, Yang H (2014) Prediction of forming limit based on cross-sectional distortion for rotary draw bending of H96 brass double-ridged rectangular tube. Int J Adv Manuf Technol 71:1445–1454. doi:10.1007/s00170-013-5552-2

    Article  Google Scholar 

  22. Nguyen DT, Kim YS (2013) A numerical study on establishing the forming limit curve and indicating the formability of complex shape in incremental sheet forming process. Int J Precis Eng Manuf 14:2087–2093. doi:10.1007/s12541-013-0283-8

    Article  Google Scholar 

  23. Lee JW, Kwon HC, Rhee MH, Irn YT (2003) Determination of forming limit of a structural aluminum tube in rubber pad bending. J Mater Process Technol 140:487–493. doi:10.1016/S0924-0136(03)00775-1

    Article  Google Scholar 

  24. Yan J, Yang H, Zhan M, Li H (2010) Forming limits under multi-index constraints in NC bending of aluminum alloy thin-walled tubes with large diameters. Sci China Tech Sci 53:326–342. doi:10.1007/s11431-009-0331-x

    Article  Google Scholar 

  25. Sivasankaran S, Narayanasamy R, Jeyapaul R, Loganathan C (2009) Modelling of wrinkling in deep drawing of different grades of annealed commercially pure aluminium sheets when drawn through a conical die using artificial neural network. Mater Des 30:3193–3205. doi:10.1016/j.matdes.2009.01.020

    Article  Google Scholar 

  26. Zemin F, Jianhua M, Chen L, Chen W (2010) Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal. Mater Des 30:267–277. doi:10.1016/j.matdes.2009.06.019

    Google Scholar 

  27. Wei DL, Zhen ZS, Chen J (2009) Optimization and tolerance prediction of sheet metal forming process using response surface model. Comput Mater Sci 42:228–233. doi:10.1016/j.commatsci.2007.07.014

    Article  Google Scholar 

  28. Yan J (2016) Plastic wrinkling model and characteristics of shear enforced titanium alloy thin-walled tubes under combination die constraints and differential temperature fields. Chin J Aeronaut doi:10.1016/j.cja. 2016.06.019

  29. Editor commitee of “China aeronautical materials handbook” (2001) China aeronautical materials handbook. China standard press Beijing, pp 10–20 (in Chinese)

  30. Yan J, Wu W (2016) Identification method of shear stress constitutive parameters of Ti-alloy thin-walled tube. Acta Aeronautica Et Astronautica Sinica 37:2884–2894. doi:10.7527/S1000-6893.2015.0289

    Google Scholar 

  31. Zhao ZN (2002) Heat transfer. Higher education press, Beijing (in Chinese)

    Google Scholar 

  32. Li YQ, Lin ZR, Chen CK, Zhang ZY, Ying JL (1986) Ti-alloy sheet metal forming technology. Defense Industry Press, Beijing (in Chinese)

    Google Scholar 

  33. Hibbit K, Sorensen (2009) ABAQUS. Version 6.9. Hibbit Karlson and Sorensen Inc Washington

  34. Ren LQ (2009) Regression design and its optimization. Science Press, Beijing (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Wu, W. & Xu, B. Prediction for multi-index constrained forming limit in shear bending process of Ti-alloy thin-walled tube under differential temperature fields. Int J Adv Manuf Technol 91, 1117–1128 (2017). https://doi.org/10.1007/s00170-016-9791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9791-x

Keywords

Navigation