Skip to main content
Log in

Pattern-based reasoning for rapid redesign: a proactive approach

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

This paper describes our continued effort in the development of the model-based rapid redesign methodology. In the prior work (Chen et al. in ASME J Mech Des 129:283–294, 2007), we have explored and applied various decomposition patterns for rapid redesign to effectively control design change propagation. Since the decomposition process for redesign is not activated until the presence of a redesign request, this prior work represents a reactive approach where a new set of decomposition patterns should be generated in accordance with a different redesign request input. As an extension to our redesign methodology, this paper presents a proactive approach to complement the existing methodology for rapid redesign. In this approach, the decomposition patterns capturing generic decomposed structures of a given design model are created in advance and stored in a design library before any redesign request emerges. These pre-generated patterns are able to address any upcoming redesign request without further decomposition procedures in redesign. This proactive approach is developed in a new framework of pattern-based reasoning that is built on the mechanism “case → pattern → strategy.” Two methodological components, Proactive Redesign Decomposition and Redesign Condition Analysis, are introduced along with a redesign application to an existing air-cooled condenser for illustration. This redesign approach is particularly useful when it requires only minor yet frequent modifications for the existing design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Another logical result is the uncoupled matrix, which shows no interaction between the formed clusters. This case will not be discussed as design change propagation can be well controlled within the clusters. Further analysis is not necessary.

References

  • Beyers R, Desa S (1994) An optimization-based framework for simultaneous plant-controller redesign. ASME J Mech Des 116:396–404. doi:10.1115/1.2919392

    Article  Google Scholar 

  • Bouikni N, Desrochers A, Rivest L (2006) A product feature evolution validation model for engineering change management. J Comput Inf Sci Eng 6:188–195. doi:10.1115/1.2194909

    Article  Google Scholar 

  • Chang WC, Van YT (2003) Researching design trends for the redesign of product form. Des Stud 24(2):173–180

    Google Scholar 

  • Chen L, Li S (2005) Analysis of decomposability and complexity for design problems in the context of decomposition. ASME J Mech Des 127:545–557. doi:10.1115/1.1897405

    Article  Google Scholar 

  • Chen L, Ding Z, Li S (2005a) A formal two-phase method for decomposition of complex design problems. ASME J Mech Des 127:184–195. doi:10.1115/1.1778186

    Article  Google Scholar 

  • Chen L, Ding Z, Li S (2005b) Tree-based dependency analysis in decomposition and re-decomposition of complex design problems. ASME J Mech Des 127:12–23. doi:10.1115/1.1778185

    Article  Google Scholar 

  • Chen L, Macwan A, Li S (2007) Model-based rapid redesign using decomposition patterns. ASME J Mech Des 129:283–294. doi:10.1115/1.2406099

    Article  Google Scholar 

  • Clarkson PJ, Simons C, Eckert C (2004) Predicting change propagation in complex design. J Mech Des 126:788–797. doi:10.1115/1.1765117

    Article  Google Scholar 

  • Das D, Gupta SK, Nau DS (1996) Generating redesign suggestions to reduce setup cost: a step towards automated redesign. Comput Aided Des 28(10):763–782. doi:10.1016/0010-4485(95)00034-8

    Article  Google Scholar 

  • Dixon LA, Colton JS (2000) A process management strategy for re-design: an anchoring adjustment approach. J Eng Des 11(2):159–173. doi:10.1080/09544820050034259

    Article  Google Scholar 

  • Dove R (2001) Response ability: the language. structure, and culture of the agile enterprise. Wiley, New York

    Google Scholar 

  • Eckert C, Clarkson PJ, Zanker W (2004) Change and customization in complex engineering domains. Res Eng Des 15:1–21. doi:10.1007/s00163-003-0031-7

    Article  Google Scholar 

  • Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-based method for organizing tasks in product development. Res Eng Des 6:1–13. doi:10.1007/BF01588087

    Article  Google Scholar 

  • Fricke E, Schulz AP (2005) Design for changeability (DfC): principles to enable changes in systems throughout their entire lifecycle. Syst Eng 8:342–359. doi:10.1002/sys.20039

    Article  Google Scholar 

  • Greer JL, Wood KL, Jensen DD (2004) Effort flow analysis: a methodology for directed product evolution. Des Stud 25:193–214. doi:10.1016/j.destud.2003.09.002

    Google Scholar 

  • Holtta KMM, Otto KN (2003) Incorporating design complexity measures in architectural assessment. In: CD-ROM proceedings of ASME design engineering technical conferences, DETC2003/DTM-48648, Chicago, 2–6 September

  • Huang GQ, Mak KL (1998) Computer aids for engineering change control. J Mater Process Technol 76:187–191. doi:10.1016/S0924-0136(97)00347-6

    Article  Google Scholar 

  • Huang GQ, Yee WY, Mak KL (2001) Development of a web-based system for engineering change management. Robot Comput Integr Manuf 17:255–267. doi:10.1016/S0736-5845(00)00058-2

    Article  Google Scholar 

  • Hsu HY, Lin GCI (1998) A design-for-assembly-based product redesign approach. J Eng Des 9(2):171–195. doi:10.1080/095448298261615

    Article  Google Scholar 

  • Ingle KA (1994) Reverse engineering. McGraw-Hill, New York

    Google Scholar 

  • Keese DA, Takawale NP, Seepersad CC, Wood KL (2006) An enhanced change modes and effects analysis (CMEA) tool for measuring product flexibility with applications to consumer products. In: CD-ROM Proceedings of ASME Design Engineering Technical Conferences, DETC2006-99478, Philadelphia, 10–13 September

  • Kidd PT (1994) Agile manufacturing: forging new frontier. Addison-Wesley, Reading

    Google Scholar 

  • Kidd MW, Thompson G (2000) Engineering design change management. Integr Manuf Syst 11:74–77. doi:10.1108/09576060010303686

    Article  Google Scholar 

  • Lee HJ, Ahn HJ, Kim JW, Park SJ (2006) Capturing and reusing knowledge in engineering change management: a case of automobile development. Inf Syst Front 8:375–394. doi:10.1007/s10796-006-9009-0

    Article  Google Scholar 

  • Li S (2005) A formal decomposition-based redesign methodology for rapid design customization. PhD thesis, University of Toronto

  • Li S, Chen L (2006) Model-based decomposition using non-binary dependency analysis and heuristic partitioning analysis. In: CD-ROM Proceedings of ASME design engineering technical conferences, DETC2006/99175, Philadelphia, 10–13 September

  • Li S, Chen L (2007) Towards rapid redesign—pattern-based redesign planning for large-scale and complex redesign problems. ASME J Mech Des 129:227–233. doi:10.1115/1.2218885

    Article  Google Scholar 

  • Loch CH, Terwiesch C (1999a) Accelerating the process of engineering change orders: capacity and congestion effects. J Prod Innov Manage 16:145–159. doi:10.1016/S0737-6782(98)00042-3

    Article  Google Scholar 

  • Loch CH, Terwiesch C (1999b) Managing the process of engineering change orders: the case of the climate control system in automobile development. J Prod Innov Manage 16:160–172. doi:10.1016/S0737-6782(98)00042-3

    Article  Google Scholar 

  • Morris JM, Steiner M (2006) Product architecture navigation integration tool: redesign towards modular architecture. In: CD-ROM Proceedings of ASME design engineering technical conferences, DETC2006-99507, Philadelphia, 10–13 September

  • Ollinger GA, Stahovich TF (2004) RedesignIT—a model-based tool for managing design changes. J Mech Des 126:208–216. doi:10.1115/1.1666888

    Article  Google Scholar 

  • Otto KN, Wood KL (1998) Product evolution: a reverse engineering and redesign methodology. Res Eng Des 10:226–243. doi:10.1007/s001639870003

    Article  Google Scholar 

  • Pine BJ (1993) Mass customization: the new frontier in business competition. Harvard Business School Press, Boston

    Google Scholar 

  • Rose CM, Ishii K, Stevels A (2002) Influencing design to improve product end-of-life stage. Res Eng Des 13:83–93

    Google Scholar 

  • Rouibah K, Caskey KR (2003) Change management in concurrent engineering from a parameter perspective. Comput Ind 50:15–34. doi:10.1016/S0166-3615(02)00138-0

    Article  Google Scholar 

  • Sand JC, Gu P, Watson G (2002) HOME: house of modular enhancement—a tool for modular product redesign. Concurrent Eng Res Appl 10:153–164. doi:10.1177/1063293X02010002638

    Article  Google Scholar 

  • Silver MR, de Weck OL (2007) Time-expanded decision networks: a framework for designing evolvable complex systems. Syst Eng 10:167–186. doi:10.1002/sys.20069

    Article  Google Scholar 

  • Simpson TW (2004) Product platform design and customization: status and process. Artif Intell Eng Des Anal Manuf 18:3–20. doi:10.1017/S0890060404040028

    Google Scholar 

  • Steiner MW (2003) Base part identification in mechanical assemblies using interaction graphs for redesign towards a star architecture. In: CD-ROM proceedings of ASME design engineering technical conferences, DETC/DFM-48162, Chicago, 2–6 September

  • Tavcar J, Duhovnik J (2005) Engineering change management in individual and mass production. Robot Comput Integr Manuf 21:205–215. doi:10.1016/j.rcim.2004.07.017

    Article  Google Scholar 

  • Tay FEH, Gu J (2003) A methodology for evolutionary product design. Eng Comput 19:160–173. doi:10.1007/s00366-003-0261-3

    Article  Google Scholar 

  • Wright IC (1997) A review of research into engineering change management: implications for product design. Des Stud 18:33–42. doi:10.1016/S0142-694X(96)00029-4

    Google Scholar 

  • Wu J, Tan ST, Sze WS (2001) Assembly redesign for rapid prototyping. In: CD-ROM proceedings of ASME design engineering technical conferences, DETC2001/DFM-21167, Pittsburgh, 9–12 September

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Li.

Appendix: Description of parameters (columns) and functions (rows) for the example problem

Appendix: Description of parameters (columns) and functions (rows) for the example problem

Column / row

Description

 C 1

Tube outer diameter (m)

 C 2

Tube inner diameter (m)

 C 3

Tube pitch (m)

 C 4

Tube wall thickness (m)

 C 5

Air specific heat (kJ/kgK)

 C 6

Air density (kg/m3)

 C 7

Air viscosity (Ns/m2)

 C 8

Air conductivity (W/m·K)

 C 9

Fin material conductivity (W/mK)

 C 10

Additive heat resistance due to dust, etc. (m2 K/W)

 C 11

Surface condition factor (irregular: 0.11; regular: 0.07)

 C 12

Evaporating temperature (°C)

 C 13

Outdoor air temperature (°C)

 C 14

Leaving air temperature (°C)

 C 15

Condensing temperature (refrigerant saturation, °C)

 C 16

Logarithm mean temperature between air and refrigerant (°C)

 C 17

Vertical portion of total fin and tube area (m2)

 C 18

Horizontal portion of total fin and tube area (m2)

 C 19

Average area of 1-m long tube surface (m2)

 C 20

Total fin and tube area (m2)

 C 21

Ratio of A to tube inner surface area (8 ~ 10)

 C 22

Ratio of net flow area to face air area

 C 23

Heat transfer area (m2)

 C 24

Face air velocity (m/s)

 C 25

Net flow area velocity (m/s)

 C 26

Efficiency of fin and tube

 C 27

Efficiency of fin

 C 28

Refrigerant heat transfer coefficient (W/m2 K)

 C 29

Air-side heat transfer coefficient (W/m2 K)

 C 30

Air-side equivalent heat transfer coefficient (W/m2 K)

 C 31

Overall heat transfer conductance (W/m2 K)

 C 32

Total length of (fin and) tube (m)

 C 33

Total number of tubes

 C 34

Length per tube (m)

 C 35

Number of tube rows (2 ~ 4)

 C 36

Number of tubes per row

 C 37

Width of condenser (m)

 C 38

Cooling capacity (W)

 C 39

Heat rejection load (W)

 C 40

Air mass flow rate (kg/s)

 C 41

Heat flux (200 ~ 300 W/m2)

 C 42

Reynolds number

 C 43

Air-side resistance (air pressure drop, Pa)

 C 44

Factor related to ϕ k vs. ϕ 0

 C 45

Refrigerant thermal property coefficient (W3 N/m6K3 s)

 C 46

Exponential factor (variable) for K calculation

 C 47

Exponential factor (variable) for K calculation

 C 48

Coefficient (variable) related to air flow

 C 49

Coefficient (variable) related to fin and tube structure

 C 50

Air flow resistance correction coefficient

 C 51

Cross-sectional equivalent diameter of air flow (m)

 C 52

Dimensionless equivalent fin height (m)

 C 53

Fin pitch (m)

 C 54

Fin thickness (m)

 C 55

Fin height (m)

 C 56

Fin length along air flow direction (m)

Row

 R 1

Compute heat rejection load for condenser

 R 2

 R 3

 R 4

Select “plate fin with disordered rows of tubes”, and compute the related structural parameters

 R 5

 R 6

 R 7

 R 8

 R 9

 R 10

 R 11

 R 12

 R 13

Compute cool air flow mass flow rate

 R 14

 R 15

Compute air related velocities

 R 16

 R 17

Set refrigerant heat transfer coefficient

 R 18

 R 19

Set air-side equivalent heat transfer coefficient

 R 20

 R 21

 R 22

 R 23

 R 24

 R 25

 R 26

 R 27

 R 28

 R 29

 R 30

 R 31

Set overall heat transfer conductance

 R 32

 R 33

Compute log-mean temperature

 R 34

Find heat flux, and determine heat transfer area

 R 35

 R 36

Configure condenser structural parameters

 R 37

 R 38

 R 39

 R 40

Compute air pressure drop

 R 41

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Chen, L. Pattern-based reasoning for rapid redesign: a proactive approach. Res Eng Design 21, 25–42 (2010). https://doi.org/10.1007/s00163-009-0069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-009-0069-2

Keywords

Navigation