Skip to main content
Log in

Contribution to single-point closure Reynolds-stress modelling of inhomogeneous flow

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basso, E., Antunes, A.P., Azevedo, J.L.F.: Chimera simulations of supersonic flows over a complex satellite launcher configuration. J. Spacecraft Rockets 40, 345–355 (2003)

    Google Scholar 

  2. Batten, P., Craft, T.J., Leschziner, M.A., Loyau, H.: Reynolds-stress transport modelling for compressible aerodynamics applications. AIAA J. 37, 785–797 (1999)

    Google Scholar 

  3. Chassaing, J.C., Gerolymos, G.A., Vallet, I.: Efficient and robust Reynolds-stress model computation of 3D compressible flows. AIAA J. 41, 763–773 (2003)

    Google Scholar 

  4. Chassaing, J.C., Gerolymos, G.A., Vallet, I.: Reynolds-stress model dual time stepping computation of unsteady 3D flows. AIAA J. 41, 1882–1894 (2003)

    Google Scholar 

  5. Chou, P.Y.: On velocity correlations and solutions of equations of turbulent fluctuations. Quart. Appl. Math. 3, 38–54 (1945)

    Google Scholar 

  6. Comte-Bellot, G.: Ecoulement turbulent entre 2 parois parallèles. Pub. Scientifiques et Tec. 419, Ministère de l’Air, Paris [f] (1965)

  7. Craft, T.J.: Developments in a low-Reynolds-number second moment closure and its application to separating and reattaching flows. Int. J. Heat Fluid Flow 19, 541–548 (1998)

    Google Scholar 

  8. Craft, T.J., Launder, B.: A Reynolds-stress model designed for complex geometries. Int. J. Heat Fluid Flow 17, 245–254 (1996)

    Google Scholar 

  9. Craft, T.J., Launder, B., Suga, K.: Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model. Int. J. Heat Fluid Flow 18, 15–28 (1997)

    Google Scholar 

  10. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)

    Google Scholar 

  11. Djenidi, L., Antonia, R.A.: Modelling of the Reynolds-stress transport equation. AIAA J. 35, 450–455 (1997)

    Google Scholar 

  12. Dolling, D.S., Murphy, M.T.: Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21, 1628–1634 (1983)

    Google Scholar 

  13. Doukelis, A., Mathioudakis, K., Papailiou, K.D.: The effect of tip clearance gap size and wall rotation on the performance of a high-speed annular compressor cascade. ASME Paper 98–GT–38 (1998)

  14. Durbin, P.A.: A Reynolds-stress model for near wall turbulence. J. Fluid Mech. 249, 465–498 (1993)

    Google Scholar 

  15. Favre, A.: Equations des gaz turbulents compressibles – I – formes générales. J. Méc. 4, 361–390 (1965)

    Google Scholar 

  16. Favre, A.: Equations des gaz turbulents compressibles – II – méthode des vitesses moyennes; méthode des vitesses moyennes pondérées par la masse volumique. J. Méc. 4, 391–421 (1965)

    Google Scholar 

  17. Gerolymos, G.A., Neubauer, J., Michon, G.J.: Analysis and application of chorochronic periodicity for turbomachinery rotor/stator interaction computation. J. Prop. Power 18, 1139–1152 (2002)

    Google Scholar 

  18. Gerolymos, G.A., Neubauer, J., Sharma, V.C., Vallet, I.: Improved prediction of turbomachinery flows using the near wall Reynolds-stress model. ASME J. Turbom. 124, 86–99 (2002)

    Google Scholar 

  19. Gerolymos, G.A., Sauret, E., Vallet, I.: Influence of inflow turbulence in shock wave/turbulent boundary layer interaction computations. AIAA J. 42, 1101–1106 (2004)

    Google Scholar 

  20. Gerolymos, G.A., Sauret, E., Vallet, I.: Oblique shock wave/boundary layer interaction using near wall Reynolds-stress models. AIAA J. 42, 1089–1100 (2004)

    Google Scholar 

  21. Gerolymos, G.A., Vallet, I.: Near wall Reynolds-stress 3-D transonic flows computation. AIAA J. 35, 228–236 (1997)

    Google Scholar 

  22. Gerolymos, G.A., Vallet, I.: Wall-normal-free near wall Reynolds-stress closure for 3D compressible separated flows. AIAA J. 39, 1833–1842 (2001)

    Google Scholar 

  23. Gerolymos, G.A., Vallet, I.: Wall-normal-free Reynolds-stress model for rotating flows applied to turbomachinery. AIAA J. 40, 199–208 (2002)

    Google Scholar 

  24. Gessner, F.B., Emery, A.F.: The numerical prediction of developing turbulent flow in rectangular ducts. ASME J. Fluids Eng. 103, 445–455 (1981)

    Google Scholar 

  25. Gibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary-layer. J. Fluid Mech. 86, 491–511 (1978)

    Google Scholar 

  26. Hanjalić, K.: Advanced turbulence closure models: A view of current status and future prospects. Int. J. Heat Fluid Flow 15, 178–203 (1994)

    Google Scholar 

  27. Hanjalić, K., Jakirlić, S.: Contribution towards the second-moment closure modelling of separating turbulent flows. Comp. Fluids 27, 137–156 (1998)

    Google Scholar 

  28. Hanjalić, K., Launder, B.E.: A Reynolds-stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609–638 (1972)

    Google Scholar 

  29. Hinze, J.O.: Turbulence. McGraw-Hill, [NY, USA], 2nd. ed., ISBN 0–07–029037–7 (1975)

  30. Horstman, C.C., Settles, G.S., Vas, I.E., Bogdonoff, S.M., Hung, C.M.: Reynolds number effect on shock-wave turbulent boundary-layer interactions. AIAA J. 15, 1152–1158 (1977)

    Google Scholar 

  31. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)

    Google Scholar 

  32. Lai, Y.G., So, R.M.C.: On near wall turbulent flow modelling. J. Fluid Mech. 221, 641–673 (1990)

    Google Scholar 

  33. Lakshminarayana, B.: Turbulence modeling for complex shear flows. AIAA J. 24, 1900–1917 (1986)

    Google Scholar 

  34. Laufer, J.: Some recent measurements in a 2D turbulent channel. J. Aero. Sci. 17, 277–287 (1950) [for detailed data cf NACA Tech. Note 2123 (1950) and NACA Rep. 1053 (1950)]

  35. Launder, B.E.: Numerical computation of convective heat transfer in complex turbulent flows: Time to abandon wall-functions? Int. J. Heat Mass Transf. 27, 1485–1491 (1984)

    Google Scholar 

  36. Launder, B.E.: Second-moment closure: Present ...and future? Int. J. Heat Fluid Flow 10, 282–300 (1989)

    Google Scholar 

  37. Launder, B.E., Li, S.P.: On the elimination of wall-topography parameters from 2-moment closure. Phys. Fluids 6, 999–1006 (1994)

    Google Scholar 

  38. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Google Scholar 

  39. Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of flows near a spinning disk. Lett. Heat Mass Transf. 1, 131–138 (1974)

    Google Scholar 

  40. Launder, B.E., Shima, N.: 2-moment closure for the near wall sublayer: Development and application. AIAA J. 27, 1319–1325 (1989)

    Google Scholar 

  41. Launder, B.E., Tselepidakis, D.P.: Application of a new second moment closure to turbulent channel flow rotating in orthogonal mode. Int. J. Heat Fluid Flow 15, 2–10 (1994)

    Google Scholar 

  42. Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward facing step. J. Fluid Mech. 330, 349–374 (1997)

    Google Scholar 

  43. Lumley, J.L.: Rational approach to relations between motions of differing scales in turbulent flows. Phys. Fluids 10, 1405–1408 (1967)

    Google Scholar 

  44. Lumley, J.L.: Towards a turbulence constitutive relation. J. Fluid Mech. 41, 413–434 (1970)

    Google Scholar 

  45. Lumley, J.L.: Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123–176 (1978)

    Google Scholar 

  46. Manceau, R., Hanjalić, K.: Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14, 744–754 (2002)

    Google Scholar 

  47. Manceau, R., Wang, M., Laurence, D.: Inhomogeneity and anisotropy effects on the redistribution term in Reynolds-averaged Navier–Stokes modelling. J. Fluid Mech. 438, 307–338 (2001)

    Google Scholar 

  48. Naot, D., Shavit, A., Wolfshtein, M.: Interactions between components of the turbulent velocity correlation tensor due to pressure fluctuations. Israel J. Techn. 8, 259–269 (1970)

    Google Scholar 

  49. Naot, D., Shavit, A., Wolfshtein, M.: 2-point correlation model and the redistribution of Reynolds-stresses. Phys. Fluids 16, 738–743 (1973)

    Google Scholar 

  50. Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002)

    Google Scholar 

  51. Pennisi, S., Trovato, M.: On the irreducibility of Prof. G. F. Smith’s representations for isotropic functions. Int. J. Eng. Sci. 25, 1059–1065 (1987)

    Google Scholar 

  52. Pettersson, B.A., Andersson, H.I., Brunvoll, A.S.: Modelling near-wall effects in axially rotating pipe flow by elliptic relaxation. AIAA J. 36, 1164–1170 (1998)

    Google Scholar 

  53. Pope, S.B.: Turbulent Flows. Cambridge Uni. Press, Cambridge [UK], ISBN 0–521–59125–2 (2000)

  54. Poroseva, S.V., Kassinos, S.C., Langer, C.A., Reynolds, W.C.: Structure-based turbulence model: Application to rotating pipe flow. J. Phys. Fluids 14, 1523–1532 (2002)

    Google Scholar 

  55. Ristorcelli, J.R., Lumley, J.L., Abid, R.: A rapid pressure covariance representation consistent with the Taylor–Proudman theorem materially frame indifferent in the 2D limit. J. Fluid Mech. 292, 111–152 (1995)

    Google Scholar 

  56. Rogers, S.E., Roth, K., Cao, H.V., Slotnick, J.P., Whitlock, M., Nash, S.M., Baker, M.D.: Computation of viscous flow for a Boeing 777 aircraft in landing configuration. J. Aircraft 30, 1060–1068 (2001)

    Google Scholar 

  57. Rotta, J.: Statistische Theorie nichthomogener Turbulenz – 1. Mitteilung. Z. Phys. 129, 547–572 (1951)

  58. Rotta, J.: Statistische Theorie nichthomogener Turbulenz – 2. Mitteilung. Z. Phys. 131, 51–77 (1951)

  59. Sarkar, S., Erlebacher, G., Hussaini, M.Y., Kreiss, H.O.: The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991)

    Google Scholar 

  60. Sellig, M.S., Andreopoulos, J., Muck, K.C., Dussauge, J.P., Smits, A.J.: Turbulence structure in a shock-wave/turbulent boundary layer interaction. AIAA J. 27, 862–869 (1989)

    Google Scholar 

  61. Settles, G.S., Dodson, L.J.: Supersonic and hypersonic shock/boundary layer interaction database. AIAA J. 32, 1377–1383 (1994)

    Google Scholar 

  62. Settles, G.S., Vas, I.E., Bogdonoff, S.M.: Details of a shock separated turbulent boundary layer at a compression corner. AIAA J. 14, 1709–1715 (1976)

    Google Scholar 

  63. Shima, N.: A Reynolds-stress model for near wall and low Reynolds number regions. ASME J. Fluids Eng. 110, 38–44 (1988)

    Google Scholar 

  64. Shima, N.: Prediction of turbulent boundary layer flows with a 2-moment closure – Part 1 – Effects of periodic pressure gradient, wall transpiration, and free-stream turbulence. ASME J. Fluids Eng. 115, 56–63 (1993)

    Google Scholar 

  65. Shima, N.: Prediction of turbulent boundary layer flows with a 2-moment closure – Part 2 – Effects of streamline curvature and spanwise rotation. ASME J. Fluids Eng. 115, 64–69 (1993)

    Google Scholar 

  66. Shima, N.: Low Reynolds number second moment closure without wall reflection redistribution terms. Int. J. Heat Fluid Flow 19, 549–555 (1998)

    Google Scholar 

  67. Shir, C.C.: A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer. J. Atm. Sci. 30, 1327–1339 (1973)

    Google Scholar 

  68. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Google Scholar 

  69. Smits, A.J., Dussauge, J.P.: Turbulent Shear Layers in Supersonic Flow. AIP Press, Woodbury [NY, USA], ISBN 1–56396–260–8 (1996)

  70. So, R.M.C., Lai, Y.G., Zhang, H.S., Hwang, B.C.: 2-order near wall turbulence closures: A review. AIAA J. 29, 1819–1835 (1991)

    Google Scholar 

  71. So, R.M.C., Yuan, S.P.: Near wall 2-equation and Reynolds-stress modelling of backstep flow. Int. J. Eng. Sci. 36, 283–298 (1998)

    Google Scholar 

  72. So, R.M.C., Yuan, S.P.: A geometry independent near wall Reynolds-stress closure. Int. J. Eng. Sci. 37, 33–57 (1999)

    Google Scholar 

  73. Spalding, D.B.: A single formula for the law of the wall. ASME J. Appl. Mech. 28, 455–458 (1961)

    Google Scholar 

  74. Speziale, C.G.: On nonlinear k-ℓ and k-ε models of turbulence. J. Fluid Mech. 178, 459–475 (1987)

    Google Scholar 

  75. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Ann. Rev. Fluid Mech. 23, 107–157 (1991)

    Google Scholar 

  76. Speziale, C.G., Gatski, T.B.: Analysis and modelling of anisotropies in the dissipation rate of turbulence. J. Fluid Mech. 344, 155–180 (1997)

    Google Scholar 

  77. Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. J. Fluid Mech. 227, 245–272 (1991)

    Google Scholar 

  78. Tomaro, R.F., Witzeman, F.C., Strang, W.S.: Simulation of store separation for the F/A–18C using cobalt60. J. Aircraft 37, 361–367 (2000)

    Google Scholar 

  79. Younis, B.A., Gatski, T.B., Speziale, C.G.: Towards a rational model for the triple velocity correlations of turbulence. Tech. Mem. TM–1999–209134, NASA, Langley Research Center, Hampton [VA, USA] (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vallet.

Additional information

Communicated by

Y. Zhou

PACS

47.32.Fg; 47.85.Gj; 47.27.Eq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerolymos, G., Sauret, E. & Vallet, I. Contribution to single-point closure Reynolds-stress modelling of inhomogeneous flow. Theoret Comput Fluid Dynamics 17, 407–431 (2004). https://doi.org/10.1007/s00162-004-0109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-004-0109-5

Keywords

Navigation