Skip to main content
Log in

A continuum model of micro-cracks in concrete

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The aim of this study is to propose a model describing the evolution of the mechanical properties of micro-cracked bodies under slow mechanical loading. To do so, we consider each material element of the body as a domain of finite size comprising one single crack. The size and orientation of the latter are treated as Lagrangian coordinates that are complementary to those usually describing the translations of the material elements. As such, their evolution is driven by some balance equations that are provided by the theory of continua with microstructure and by fit constitutive equations. To deal with the latter, we then call upon fracture mechanics. The model is applied to concrete within some simplifying assumptions and the case of a bar tensioned by a hard device is studied. Crack propagation and stiffness loss are determined when the loading increases, they are compared to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcon-Ruiz, L., Brocato, M.: Experimental analysis of thermal damage and permeability in concrete. In: European Congress on Advanced Materials and Processes 2005. Prague, Czech Republic (2005)

  2. Bary B., Bournazel J.P., Bourdarot E.: Poro-damage approach applied to hydro-fracture analysis of concrete. J. Eng. Mech. 126, 937–943 (2000)

    Article  Google Scholar 

  3. Bažant M.Z., Cedolin L.: Blunt crack band propagation in finite element analysis. J. Eng. Mech. 105(2), 381–389 (1979)

    Google Scholar 

  4. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1), 3–47 (1996)

    Article  MATH  Google Scholar 

  5. Bongué Boma, M.: Modélisation de la fissuration pour l’évaluation de la perte d’étanchéité des structures en béton armé sous chargements mécaniques. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (2007)

  6. Bongué Boma M., Brocato, M.: Configurational forces in a micro-cracked body. In: PAMM—Special Issue : Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, vol. 7, pp. 2090,003–2090,004. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2007). doi:10.1002/pamm.200700082

  7. Bongué-Boma M., Brocato M.: Liquids with vapour bubbles. Comput. Math. Appl. 55(2), 268–284 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bui H.D.: Mécanique de la rupture fragile. Masson, Paris (1978)

    Google Scholar 

  9. Capriz G.: Continua with Microstructure. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  10. Capriz G., Podio-Guidugli P.: Internal Constraints, vol. Appendix 3A. Springer-Verlag, New York (1984)

    Google Scholar 

  11. Cosserat E., Cosserat F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils, Paris (1809)

    Google Scholar 

  12. Dal Pont, S.: Lien entre la perméabilité et l’endommagement dans les bétons haute température. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (LAMI) (2004)

  13. Datsyshin A., Savruk M.: A system of arbitrarily oriented cracks in elastic solids. Appl. Math. Mech. (PMM, translation of the Soviet journal Prikl. Matem. i Mekh) 37(2), 326–332 (1973)

    Google Scholar 

  14. Borst, R., Bicanic, N., Mang, H., Meschke, G. (eds): Embedded Crack Models for Concrete Fracture. Taylor and Francis Group, Boca Raton (1998)

    Google Scholar 

  15. Denarié, E.: Etude expérimentale des couplages viscoélasticité-croissances des fissures dans les bétons de ciment. Ph.D. thesis, Ecole polytechnique fédérale de Lausanne (2000)

  16. Epstein M., de Leon M.: Geometrical theory of uniform cosserat media. J. Geom. Phys. 26(1-2), 127–170 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Ericksen J., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eringen A.C.: A unified continuum theory of electrodynamics of liquid crystals. Int. J. Eng. Sci. 35(12–13), 1137–1157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eringen A.C.: Microcontinuum Field Theories, I. Foundations and Solids. Springer-verlag, Inc., New York (1999)

    MATH  Google Scholar 

  20. Eringen A.C., Suhubi E.: Nonlinear theory of simple micro-elastic solids I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eshelby J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. 244, 87–112 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Eshelby J.D.: The continuum theory of lattice defects. Solid State Phys. 3, 79–156 (1956)

    Article  Google Scholar 

  23. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solid Struct. 43, 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gawin D., Majorana C.E., Schrefler B.A.: Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohes. Frict. Mater. 4, 37–74 (1999)

    Article  Google Scholar 

  25. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. J. Méc. 12(2), 235–273 (1973)

    MATH  MathSciNet  Google Scholar 

  26. Goodman M.A., Cowin S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gross D.: Spannungintensitatsfaktoren von ribsystemen (stress intensity factors of systems of cracks). Ing. Arch. 51, 301–310 (1982)

    Article  MATH  Google Scholar 

  28. Gurtin M.E., Podio-Guidugli P.: Configurational forces and a the basic laws for cracks propagation. J. Mech. Phys. Solids 44(6), 905–927 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Gurtin M.E., Podio-Guidugli P.: Configurational forces and a constitutive theory for crack propagation that alows for kinking and curving. J. Mech. Phys. Solids 46(8), 1343–1378 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Hillerborg A., Moder M., Petersson P.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics. Cem. Concr. Res. 6(6), 773–782 (1976)

    Article  Google Scholar 

  31. Horii H., Nemat-Nasser S.: Elastic fields of interacting inhomogeneities. Int. J. Solids Struct. 21(7), 731–745 (1985)

    Article  MATH  Google Scholar 

  32. Hsu T.T.C., Slate F.O., Sturman G.M., Winter G.: Microcracking of plain concrete and the shape of the stress–strain curve. ACI J 60(2), 209–224 (1963)

    Google Scholar 

  33. Jirásek M.: Comparative study of finite elements with embedded discontinuities. Comput. Methods Appl. Mech. Eng. 188, 307–330 (2000)

    Article  MATH  Google Scholar 

  34. Kachanov M.: Time of the rupture process under creep conditions. IVZ Akad Nauk SSR, Otd Tekh. Nauk 8, 23–31 (1958)

    Google Scholar 

  35. Kachanov M.: Elastic solids with many cracks: a simple method of analysis. Int. J. Solids Struct. 23(1), 23–43 (1987)

    Article  MATH  Google Scholar 

  36. Kachanov M.: Elastic solids with many cracks and related problems. Adv. Appl. Mech 30, 259–445 (1993)

    Article  Google Scholar 

  37. Li Y.P., Tham L.G., Wang Y.H., Tsui Y.: A modified kachanov method for analysis of solids with multiple cracks. Eng. Fract. Mech. 70(9), 1115–1129 (2003)

    Article  Google Scholar 

  38. Mandel J.: CISM Courses and Lectures No.97, chap. Plasticité classique et viscoplasticité. Springer-Verlag, New York (1972)

    Google Scholar 

  39. Mazars, J.: Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Ph.D. thesis, University of Paris VI (France) (1984)

  40. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(51), 51–78 (1964)

    MATH  MathSciNet  Google Scholar 

  41. Monteiro P., Lubliner J.: A generalized continuum theory for concrete. Cem. Concr. Res. 19(6), 929–938 (1989)

    Article  Google Scholar 

  42. Neff P., Forest S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Picandet V., Khelidj A., Bastian G.: Effect of axial compressive damage on gas permeability of ordinary and high- performance concrete. Cem. Concr. Res. 31, 1525–1532 (2001)

    Article  Google Scholar 

  44. Saito M.: Characterictics of microcracking in concrete under static and repeated tensile loading. Cem. Concr. Res. 17(2), 211–218 (1987)

    Article  Google Scholar 

  45. Simonin, F.: Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon (2000)

  46. Truesdell C.A., Noll W.: The non-linear field theories of mechanics. In: Flügge, S. (eds) Encyclopedia of Physics, vol. III/3, Springer-Verlag, Berlin (1965)

    Google Scholar 

  47. Ward M., Cook D.: The mechanism of tensile creep in concrete. Mag. Concr. Res. 21(68), 151–158 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malika Bongué Boma.

Additional information

Communicated by Paolo Cermelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongué Boma, M., Brocato, M. A continuum model of micro-cracks in concrete. Continuum Mech. Thermodyn. 22, 137–161 (2010). https://doi.org/10.1007/s00161-009-0130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0130-4

Keywords

PACS

Navigation