Skip to main content
Log in

First-order Nilpotent minimum logics: first steps

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Inspired by the work done by Baaz et al. (Ann Pure Appl Log 147(1–2): 23–47, 2007; Lecture Notes in Computer Science, vol 4790/2007, pp 77–91, 2007) for first-order Gödel logics, we investigate Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra, establishing also a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and the monadic fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguzzoli S., Busaniche M., Marra V.: Spectral duality for finitely generated Nilpotent Minimum algebras, with applications. J. Log. Comput. 17(4), 749–765 (2007)doi:10.1093/logcom/exm021

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguzzoli S., Gerla B.: Probability measures in the logic of Nilpotent Minimum. Stud. Log. 94, 151–176 (2010)doi:10.1007/s11225-010-9228-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguzzoli, S., Gerla, B., Manara, C.: Poset representation for Gödel and Nilpotent minimum logics. In: Godo, L. (ed.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Lecture Notes in Computer Science, vol. 3571, pp. 469–469. Springer, Berlin (2005). doi:10.1007/10.1007/11518655_56

  4. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Monadic fragments of Gödel logics: decidability and undecidability results. In: Dershowitz, N., Voronkov, A. (eds). Logic for Programming, Artificial Intelligence, and Reasoning—14th International Conference, LPAR 2007, Yerevan, Armenia, October 15–19, 2007. Proceedings, Lecture Notes in Computer Science, vol. 4790/2007, pp. 77–91. Springer, Berlin (2007). doi:10.1007/978-3-540-75560-9

  5. Baaz, M., Ciabattoni, A., Preining, N.: SAT in Monadic Gödel logics: a borderline between decidability and undecidability. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds). Logic, Language, Information and Computation, Lecture Notes in Computer Science, vol. 5514, pp. 113–123. Springer, Berlin (2009). doi:10.1007/978-3-642-02261-6_10

  6. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of a first-order Gödel logic and some temporal logics of programs. In: Büning, H.K. (ed). Computer Science Logic—9th International Workshop, CSL ’95 Annual Conference of the EACSL Paderborn, Germany, September 22–29, 1995 Selected Papers, Lecture Notes in Computer Science, vol. 1092/1996, pp. 1–15. Springer, Berlin (1996). doi:10.1109/10.1007/3-540-61377-3_28

  7. Baaz M., Preining N., Zach R.: First-order Gödel logics. Ann. Pure. Appl. Log. 147(1-2), 23–47 (2007) doi: 10.1016/j.apal.2007.03.001

    Article  MathSciNet  MATH  Google Scholar 

  8. Blok, W., Pigozzi, D.: Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77. American Mathematical Society (1989) ISBN:0-8218-2459-7. Available on http://orion.math.iastate.edu/dpigozzi/

  9. Boixader, D., Esteva, F., Godo, L.: On the continuity of t-norms on bounded chains. In: Proceedings of the 8th IFSA World Congress IFSA’99, pp. 476–479. Taipei, Taiwan (1999)

  10. Busaniche M.: Free Nilpotent Minimum algebras. Math. Log. Q. 52(3), 219–236 (2006) doi: 10.1002/malq.200510027

    Article  MathSciNet  MATH  Google Scholar 

  11. Busaniche M., Cignoli R.: Constructive logic with strong negation as a substructural logic. J. Log. Comput. 20(4), 761–793 (2010) doi:10.1093/logcom/exn081

    Article  MathSciNet  MATH  Google Scholar 

  12. Cignoli R., Torrens P.: Free algebras in varieties of Glivenko MTL-algebras satisfying the equation 2(x 2) =  (2x)2. Stud. Log. 83(1-3), 157–181 (2006) doi: 10.1007/s11225-006-8302-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Cintula P., Hájek P.: Triangular norm predicate fuzzy logics. Fuzzy Sets Syst. 161(3), 311–346 (2010) doi: 10.1016/j.fss.2009.09.006

    Article  MATH  Google Scholar 

  14. Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24(2), 97–106 (1959) http://www.jstor.org/stable/2964753

    Google Scholar 

  15. Dunn J.M., Meyer R.K.: Algebraic completeness results for Dummett’s LC and its extensions. Math. Log. Q. 17(1), 225–230 (1971) doi:10.1002/malq.19710170126

    Article  MathSciNet  MATH  Google Scholar 

  16. El-Zekey M., Lotfallah W., Morsi N.: Computational complexities of axiomatic extensions of monoidal t-norm based logic. Soft Comput. 13, 1089–1097 (2009) doi:10.1007/s00500-008-0382-0

    Article  MATH  Google Scholar 

  17. Esteva F., Godo L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001) doi:10.1016/S0165-0114(01)00098-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Esteva F., Godo L., Noguera C.: On rational weak Nilpotent minimum logics. J. Mult. Valued Log. Soft Comput. 12, 9–32 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Esteva, F., Godo, L., Noguera, C.: First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Ann. Pure Appl. Log. 161(2), 185–202 (2009). doi:10.1016/j.apal.2009.05.014

  20. Esteva F., Godo L., Noguera C.: Expanding the propositional logic of a t-norm with truth-constants: completeness results for rational semantics. Soft Comput. 14, 273–284 (2010) doi:10.1007/s00500-009-0402-8

    Article  MATH  Google Scholar 

  21. Esteva F., Godo L., Noguera C.: On expansions of WNM t-norm based logics with truth-constants. Fuzzy Sets Syst. 161(3), 347–368 (2010) doi: 10.1016/j.fss.2009.09.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Feferman, S., Jr., J.W.D., Goldfarb, W., Parsons, C., Sieg, W. (eds.): Kurt Gödel Collected Works, vol. 1 Publications: 1929–1936, paperback edn. Oxford University Press (2001) ISBN:9780195147209

  23. Fodor, J.: Nilpotent minimum and related connectives for fuzzy logic. In: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium. Proceedings of 1995 IEEE International Conference on, pp. 2077–2082. IEEE (1995). doi:10.1109/FUZZY.1995.409964

  24. Gödel, K.: Zum intuitionistischen Aussagenkalkul. Anzeiger Akademie der Wissenschaften Wien 69, 65–66 (1932). Reprinted in [22]

  25. Gispert, J.: Axiomatic extensions of the Nilpotent Minimum logic. Rep. Math. Logic 37, 113–123 (2003). http://www.iphils.uj.edu.pl/rml/rml-37/7-gispert.pdf

  26. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, paperback edn. Kluwer (2002) ISBN:9781402003707

  27. Hájek, P.: Observations on the monoidal t-norm logic. Fuzzy Sets Syst. 132(1), 107–112 (2002). doi:10.1016/S0165-0114(02)00057-X

  28. Hájek P.: Non-arithmetical Gödel logic. Log. J. IGPL 13(4), 435–441 (2005) doi:10.1093/jigpal/jzi033

    Article  MathSciNet  MATH  Google Scholar 

  29. Hájek P.: Arithmetical complexity of fuzzy predicate logics—a survey II. Ann. Pure Appl. Log. 161(2), 212–219 (2010) doi:10.1016/j.apal.2009.05.015

    Article  Google Scholar 

  30. Hájek P.: On witnessed models in fuzzy logic III—witnessed Gödel logics. Math. Log. Q. 56(2), 171–174 (2010) doi:10.1002/malq.200810047

    Article  MathSciNet  MATH  Google Scholar 

  31. Jenei S.: On the structure of rotation-invariant semigroups. Arch. Math. Log. 42(5), 489–514 (2003) doi:10.1007/s00153-002-0165-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Klement, E., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8, Hardcover edn. Kluwer (2000) ISBN:978-0-7923-6416-0

  33. Noguera, C.: Algebraic study of axiomatic extensions of triangular norm based fuzzy logics. Ph.D. thesis, IIIA-CSIC (2006). Available on http://www.carlesnoguera.cat/files/NogueraPhDThesis.pdf

  34. Preining, N.: Complete recursive axiomatizability of Gödel logics. Ph.D. thesis, Vienna University of Technology, Austria (2003). Available on http://www.logic.at/staff/preining/pubs/phd.pdf

  35. Preining, N.: Gödel logics—a survey. In: Fermüller, C., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer Science, vol. 6397, pp. 30–51. Springer, Berlin (2010). doi:10.1007/978-3-642-16242-8_4

  36. Seebach, J.A., Steen, L.A.: Counterexamples in topology, reprint of 1978 edn. Dover Publications (1995). ISBN:048668735X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M. First-order Nilpotent minimum logics: first steps. Arch. Math. Logic 52, 295–316 (2013). https://doi.org/10.1007/s00153-012-0317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0317-4

Keywords

Mathematics Subject Classification (2000)

Navigation