Skip to main content
Log in

No Effect of Lifelong Methylmercury Exposure on Oxidative Status in Zebra Finches (Taeniopygia guttata): A Demonstration of Methylmercury-Induced Selection?

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Songbirds exposed to methylmercury (MeHg) often exhibit reduced reproductive success and cognitive abilities. To better understand whether oxidative stress plays a role, we dosed zebra finches (Taeniopygia guttata) with a contaminated (1.2 ppm MeHg-cysteine) or control diet for their entire lives, including during development in the egg. Levels of antioxidant enzymes [superoxide dismutase (SOD1 and SOD2)], oxidative damage (4-hydroxynonenal; 4-HNE), and antioxidant transcription factors [nuclear factor (erythroid-derived 2)-like 2; Nrf2] were measured in the liver and pectoralis muscle of adults. MeHg treatment did not affect levels of 4-HNE or liver SOD2 or Nrf2. Birds in the MeHg treatment differed significantly from controls in pectoralis SOD1 and Nrf2, and tended to differ in liver SOD1 and pectoralis SOD2; however, we detected no overall pattern of effect of MeHg on oxidative status in dosed finches. We suspect that this is a consequence of the differential survival of MeHg-tolerant birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berntssen MHG, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72. doi:10.1016/s0166-445x(03)00104-8

    Article  CAS  Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335. doi:10.1126/science.1154082

    Article  CAS  Google Scholar 

  • Finger JW Jr, Hamilton MT, Glenn TC, Tuberville TD (2017) Dietary selenomethionine administration in the American alligator (Alligator mississippiensis): Hepatic and renal Se accumulation and its effects on growth and body condition. Arch Environ Contam Toxicol 72:439–448. doi:10.1007/s00244-017-0370-4

    Article  CAS  Google Scholar 

  • Fujimura M, Usuki F (2014) Low in situ expression of antioxidant enzymes in rat cerebellar granular cells susceptible to methylmercury. Arch Toxicol 88:109–113. doi:10.1007/s00204-013-1089-2

    Article  CAS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606. doi:10.1089/ars.2011.3999

    Article  CAS  Google Scholar 

  • Gatti R, Belletti S, Uggeri J, Vettori MV, Mutti A, Scandroglio R, Orlandini G (2004) Methylmercury cytotoxicity in PC12 cells is mediated by primary glutathione depletion independent of excess reactive oxygen species generation. Toxicology 204:175–185. doi:10.1016/j.tox.2004.06.023

    Article  CAS  Google Scholar 

  • Hallinger KK, Zabransky DJ, Kazmer KA, Cristol DA (2010) Birdsong differs between mercury-polluted and reference sites. Auk 127:156–161. doi:10.1525/auk.2009.09058

    Article  Google Scholar 

  • Hawley DM, Hallinger KK, Cristol DA (2009) Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology 18:499–503. doi:10.1007/s10646-009-0307-4

    Article  CAS  Google Scholar 

  • Henry KA, Cristol DA, Varian-Ramos CW, Bradley EL (2015) Oxidative stress in songbirds exposed to dietary methylmercury. Ecotoxicology 24:520–526. doi:10.1007/s10646-014-1400-x

    Article  CAS  Google Scholar 

  • Hoffman DJ, Spalding MG, Frederick PC (2005) Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environ Toxicol Chem 24:3078–3084

    Article  CAS  Google Scholar 

  • Hyatt HW, Kephart WC, Holland AM, Mumford P, Mobley CB, Lowery RP, Roberts MD, Wilson JM, Kavazis AN (2016) A ketogenic diet in rodents elicits improved mitochondrial adaptations in response to resistance exercise training compared to an isocaloric Western diet. Front Physiol 7:533. doi:10.3389/fphys.2016.00533

    Google Scholar 

  • Kenow KP, Hoffman DJ, Hines RK, Meyer MW, Bickham JW, Matson CW, Stebbins KR, Montagna P, Elfessi A (2008) Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks. Environ Pollut 156:732–738. doi:10.1016/j.envpol.2008.06.009

    Article  CAS  Google Scholar 

  • Kobiela ME, Cristol DA, Swaddle JP (2015) Risk-taking behaviours in zebra finches affected by mercury exposure. Anim Behav 103:153–160. doi:10.1016/j.anbehav.2015.02.024

    Article  Google Scholar 

  • Naganuma A, Miura K, Tanaka-Kagawa T, Kitahara J, Seko Y, Toyoda H, Imura N (1998) Overexpression of manganese-superoxide dismutase prevents methylmercury toxicity in HeLa cells. Life Sci 62:157–161

    Article  Google Scholar 

  • Ni M, Li X, Yin Z, Jiang H, Sidoryk-Wegrzynowicz M, Milatovic D, Cai J, Aschner M (2010) Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 116:590–603. doi:10.1093/toxsci/kfq126

    Article  CAS  Google Scholar 

  • Ni M, Li X, Yin Z, Sidoryk-Wegrzynowicz M, Jiang H, Farina M, Rocha JBT, Syversen T, Aschner M (2011) Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 59:810–820. doi:10.1002/glia.21153

    Article  Google Scholar 

  • Shinyashiki M, Kumagi Y, Homma-Takeda S, Nagafune J, Takasawa N, Suzuki J, Matsuzaki I, Satoh S, Sagai M, Shimojo N (1996) Selective inhibition of the mouse brain Mn-SOD by methylmercury. Environ Toxicol Pharmacol 2:359–366

    Article  CAS  Google Scholar 

  • Toyama T, Sumi D, Shinkai Y, Yasutake A, Taguchi K, Tong KI, Yamamoto M, Kumagai Y (2007) Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity. Biochem Biophys Res Commun 363:645–650. doi:10.1016/j.bbrc.2007.09.017

    Article  CAS  Google Scholar 

  • Varian-Ramos CW, Swaddle JP, Cristol DA (2013) Familial differences in the effects of mercury on reproduction in zebra finches. Environ Pollut 182:316–323. doi:10.1016/j.envpol.2013.07.044

    Article  CAS  Google Scholar 

  • Varian-Ramos CW, Swaddle JP, Cristol DA (2014) Mercury reduces avian reproductive success and imposes selection: an experimental study with adult- or lifetime-exposure in zebra finch. PLoS ONE 9:e95674. doi:10.1371/journal.pone.0095674

    Article  Google Scholar 

  • Whitney MC, Cristol DA (2017) Impacts of sublethal mercury exposure on birds: a detailed review. Rev Environ Contam Toxicol:1–51 doi:10.1007/398_2017_4

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

  • Yee S, Choi BH (1994) Methylmercury poisoning induces oxidative stress in the mouse brain. Exp Mol Pathol 60:188–196

    Article  CAS  Google Scholar 

  • Yin Z, Milatovic D, Ashner JL, Syversen T, Rocha JBT, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res 1131:1–10. doi:10.1016/j.brainres.2006.10.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by NSF (IOS-1257590 to John Swaddle and DAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Finger Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finger, J.W., Botero, J., Zhang, Y. et al. No Effect of Lifelong Methylmercury Exposure on Oxidative Status in Zebra Finches (Taeniopygia guttata): A Demonstration of Methylmercury-Induced Selection?. Bull Environ Contam Toxicol 99, 668–672 (2017). https://doi.org/10.1007/s00128-017-2202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-017-2202-7

Keywords

Navigation