Skip to main content
Log in

Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Transcriptome data were used to develop 134 Aegilops longissima specific PCR markers and their comparative maps were constructed by contrasting with the homologous genes in the wheat B genome. Three wheat– Ae. longissima 1BL·1S l S translocation lines were identified using the correspondence markers.

Abstract

Aegilops longissima is an important wild species of common wheat that harbors many genes that can be used to improve various traits of common wheat (Triticum aestivum L.). To efficiently transfer the traits conferred by these Ae. longissima genes into wheat, we sequenced the whole expression transcript of Ae. longissima. Using the transcriptome data, we developed 134 specific polymerase chain reaction markers located on the 14 chromosome arms of Ae. longissima. These novel molecular markers were assigned to specific chromosome locations based on a comparison with the homologous genes in the B genome of wheat. Annotation of these genes showed that most had functions related to metabolic processes, hydrolase activity, or catalytic activity. Additionally, we used these markers to identify three wheat–Ae. longissima 1BL·1SlS translocation lines in somatic variation populations resulting from a cross between wheat cultivar Westonia and a wheat–Ae. longissima substitution line 1Sl(1B). The translocation lines had several low molecular weight glutenin subunits encoding genes beneficial to flour processing quality that came from Ae. longissima 1SlS. The three translocation lines were also confirmed by genomic in situ hybridization. These translocation lines will be further evaluated for potential quality improvement of bread-making properties of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of HELPs, AFLPs, and SSRs and their use for predicting progeny variance. Corp Sci 39:22–23

    Google Scholar 

  • Bougot Y, Lemoine J, Pavoine MT, Barloy D, Doussinault G (2002) Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breed 121:325–329

    Article  CAS  Google Scholar 

  • Cenci A, Ovidio RD, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    Article  CAS  Google Scholar 

  • Ceoloni C, Signore GD, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas 116:239–245

    Article  Google Scholar 

  • Charles HJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty F, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  Google Scholar 

  • Chen F, Zhang FY, Morris C, He ZH, Xia XC, Cui DQ (2010) Molecular characterization of the Puroindoline a-D1b allele and development of an STS marker in wheat (Triticum aestivum L.). J Cereal Sci 52:80–82

    Article  CAS  Google Scholar 

  • Cloonan N, Forrest Alistair RR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKeruan KJ, Grimmond SE (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Zhang JP, Wu XY, Yang XM, Li XQ, Liu WH, Gao AN, Li LH (2012) Development of EST markers specific to Agropyron cristatum chromosome 6P in common wheat background. Acta Agron Sin 38:1791–1801

    Article  CAS  Google Scholar 

  • Deng X, Wang SL, Zhen SM, Zhang WY, Yan YM (2016) Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl(1B) substitution line of wheat variety Chinese Spring (Triticum aestivum). Biologia 71:1212–1222

    Article  CAS  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences shed light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo TR, Miller TE, Koebner RMD (1988) Chromosome mutations induced by gametocidal chromosome in common wheat. In: Miller TE, Koebner RMD (eds) Proceedings of 7th International Wheat Genetics Symposium. Institute of Plant Science Research, Cambridge Laboratory, Cambridge, England, pp 259–265

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops. J Smartt and NW Simmonds Longman Group, London, pp 184–192

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X, Hu Z, Han F (2016) _De Novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet 12:e1005997

    Article  PubMed  PubMed Central  Google Scholar 

  • He ZH, Xia XC, Chen XM, Zhang QS (2011) Progress of wheat breeding in China and the future perspective. Acta Agron Sin 37:202–215

    Article  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi CP, Nguyen HT (1993) RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103

    Article  CAS  Google Scholar 

  • King IP, Purdie KA, Rezanoor HN, Koebner RMD, Miller TE, Reader SM, Nicholson P (1993) Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theor Appl Genet 86:895–900

    CAS  PubMed  Google Scholar 

  • Knott DR (1961) The inheritance of rust resistance.VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Plant Sci 41:109–123

    Google Scholar 

  • Kwiatek M, Belter J, Majka M, Wiśniewska H (2016) Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (×Triticosecale Wittmack). Ptotoplasma 253:329–343

    Article  CAS  Google Scholar 

  • Li HJ, Guo BH, Li YW, Du LQ, Jia X, Chu CC (2000) Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Genome 43:756–762

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Lin ZS, Liu C, Wang K, Du LP, Ye XG (2017) Development and comparative genomic mapping of Dasypyrum villosum 6 V#4S-specific PCR markers using transcriptome data. Theor Appl Genet. doi:10.1007/s00122-017-2942-0 (online published)

    Google Scholar 

  • Liu WX, Chen PD, Liu DJ (1999a) Detection of Leymus racemosus chromatin in wheat by fluorescence in situ hybridization. Acta Genet Sin 26:546–551

    CAS  Google Scholar 

  • Liu WX, Chen PD, Liu DJ (1999b) Development of Triticum aestivum-Leymus racemosus translocation lines by irradiating adult plants at meiosis. Acta Bot Sin 41:463–467

    Google Scholar 

  • Liu X, Richard RCW, Jia JZ, Dong YC (2002) Assessing genetic diversity of Aegilops longissima Schweinf and Muschl. by RAPD markers. J Plant Genet Resour 3(1):1–6

    Google Scholar 

  • Liu FQ, Zhang YX, Tang FL, Li JL, Xu XL (2009) Creation and identification of Chinese Spring wheat Elytrigia elongata translocation lines. Acta Agrestia Sin 17:452–455

    Google Scholar 

  • Liu HY, Liu C, Wang KY, Du LP, Wang K, She MY, Ye XG (2016) Review on the identification and bread-making quality of high molecular weight glutenin subunits in wheat. J Plant Genet Resour 17:701–709

    Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome lRS of rye using wheat-rye translocation lines. Theor Appl Genet 104(8):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Miah H, Lawrence GJ (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome. Theor Appl Genet 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Mohler V, Hsams LK, ZeIler FJ (2001) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120:448–450

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waem K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netzle S, Zeller FJ (1984) Cytogenetic relationship of Aegilops longissima chromosomes with common wheat chromosomes. Plant Syst Evol 145:1–13

    Article  Google Scholar 

  • Plaschke J, Ganal MW, Roder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1117

    CAS  PubMed  Google Scholar 

  • Qi LL, Cao MS, Chen PD, Li WL, Liu DJ (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191–197

    Article  CAS  PubMed  Google Scholar 

  • Qi ZJ, Du P, Qian BL, Zhuang LF, Chen HF, Chen TT, Shen J, Guo J, Feng YG, Pei ZY (2010) Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. Theor Appl Genet 121:589–597

    Article  CAS  PubMed  Google Scholar 

  • Qi YX, Liu YB, Rong WH (2011) RNA-seq and its applications: a new technology for transcriptomics. Hereditas 33:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aestivum L. em Thell. and its relatives. Wheat Inf Serv 81:51–55

    Google Scholar 

  • Salgado K, Vieira MG, Pinho EV, Guimaraes CT, Pinho RG, Sousa LV (2006) Genetic purity certificate in seeds of hybrid maize using molecular markers. J Seed Sci 28:169–175

    Google Scholar 

  • Sears ER (1977) An induced mutant with homeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Article  Google Scholar 

  • Sears ER, Sears MS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proceedings of 5th International Wheat Genet Symposium Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 389–407

  • Shen YF, Shen J, Dawadondup Zhuang LF, Wang YZ, Pu J, Feng YG, Chu CG, Wang XE, Qi ZJ (2013) Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Mol Breed 31:195–204

    Article  CAS  Google Scholar 

  • Sheng H, Murray TD (2012) Identifying new sources of resistance to eyespot of wheat in Aegilops longissima. Plant Dis 97:346–353

    Article  Google Scholar 

  • Sheng H, See DR, Murray TD (2012) Mapping QTL for resistance to eyespot of wheat in Aegilops longissima. Theor Appl Genet 125:355–366

    Article  PubMed  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Siedler H, Messmer MM, Schachermayr GM (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Song LQ, Lu YQ, Zhang JP, Pan CL, Yang XM, Li XQ, Liu WH, Li LH (2016) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1029–1034

    Article  Google Scholar 

  • Sun GZ, Chen YC, Chang YX, Shang ZM, Wang GJ, Yan WY, Tang FL (1990) Wheat translocation lines obtained by irradiation. Acta Agric Nuclea Sin 4:1–6

    Google Scholar 

  • Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genom 11:400

    Article  Google Scholar 

  • Wang SL, Cao M, Yu ZT, Shen XX, Li N, Ma WJ, Weißgerber H, Zeller FJ, Hsam SLK, Yan YM (2013) Molecular mechanisms of HMW glutenin subunits from 1Sl genome positively affecting wheat bread-making quality. PLoS One 8:e58947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Jane RJ, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Xu HJ, Xin ZY, Liu SX, Chen X, Du LP (1996) Development of common wheat alien translocation lines by tissue culture. Acta Genet Sin 23:376–381

    CAS  Google Scholar 

  • Xue XZ, Xu XT, Wang XZ (1992) The production of new varieties in common wheat by chromosome engineering. Acta Genet Sin 19:316–321

    Google Scholar 

  • Xue F, Ji WQ, Wang CY, Zhang H, Yang BJ (2012) High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor Appl Genet 124:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Guo X, Hu J, Lv ZL, Han FP (2014) Characterization of two CENH3 genes and their roles in wheat evolution. New Phytol 206:839–851

    Article  PubMed  Google Scholar 

  • Zhang H, Reader SM, Liu X, Jia JZ, Gale MD, Devos KM (2001) Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor Appl Genet 103:518–525

    Article  CAS  Google Scholar 

  • Zhang GJ, Guo GW, Hu XD, Zhang Y, Li QY, Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Chen L, Tian W, Tao Y, Kristiansen K, Zhang XQ, Li SG, Yang HM, Wang J, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Dundas IS, McIntosh RA, Xu SS, Park RF, Gill BS, Friebe B (2015) Wheat-Aegilops Introgressions. In: Molnár-Láng M et al (eds) Alien introgression in wheat. Springer International Publishing, Switzerland, pp 220–243

    Google Scholar 

  • Zhou YC, Zhang XQ, Wang XP (2001) Chromosomal location and molecular marker of resistance gene to Puccinia striiformis west in Leymus mollis Trin. Hara Acta Genet Sin 28:864–869

    CAS  PubMed  Google Scholar 

  • Zhou J, Ma C, Zhen S, Cao M, Zeller FJ, Hsam SLK, Yan Y (2016) Identification of drought stress related proteins from 1Sl(1B) chromosome substitution line of wheat variety Chinese Spring. Bot Stud 57:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yueming Yan at Capital Normal University, China, for providing Ae. longissima accession PI542196 and wheat–Ae. longissima substitution line CB-SLB, Prof. Wenxuan Liu at Henan Agricultural University, China, for providing a set of wheat–Ae. longissima disomic chromosome addition lines, Prof. Wujun Ma at Murdoch University, Australia, for providing wheat cultivar Westonia. We are appreciated to Prof. Hongjie Li at Institute of Crop Science, Chinese Academy of Agricultural Sciences, China, for his critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Ye.

Ethics declarations

Funding

This research was financially supported by the National Key Research and Development Program of China (2016YFD0102001 and 2016YFD0102002), the National Natural Science Foundation of China (31771788), and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susanne Dreisigacker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Lin, Z., Wang, L. et al. Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. Theor Appl Genet 131, 13–25 (2018). https://doi.org/10.1007/s00122-017-2982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2982-5

Navigation