Skip to main content
Log in

Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Here, we report the production of a wheat– Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus.

Abstract

Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat–Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali N, Heslop-Harrison JS, Ahmad H, Graybosch RA, Hein GL, Schwarzacher T (2016) Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity 117:114–123

    Article  CAS  PubMed  Google Scholar 

  • Assadi M, Runemark H (1995) Hybridization, genomic constitution and generic delimitation in elymus Sl (Poaceae, Triticeae). Plant Syst Evol 194:189–205

    Article  Google Scholar 

  • Brakke MK, Skopp RN, Lane LC (1990) Degradation of wheat streak mosaic virus capsid protein during leaf senescence. Phytopathology 80:1401–1405

    Article  CAS  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Conner RL, Laroche G, Fedak G, Thomas JB (1999) Genome origins of Thinopyrum chromosomes specifying resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Genome 42:289–295

    Article  Google Scholar 

  • Christian ML, Willis WG (1993) Survival of wheat streak mosaic virus in grass hosts in Kansas from wheat harvest to fall wheat emergence. Plant Dis 77:239–242

    Article  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahim M, Mechanicos A, Ayala-Navarrete L, Haber S, Larkin PJ (2012) Resistance to wheat streak mosaic virus, a survey of resources and development of molecular markers. Plant Pathol 61:425–440

    Article  CAS  Google Scholar 

  • Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389

    Google Scholar 

  • Friebe B, Gill KS, Tuleen NA, Gill BS (1996a) Transfer of wheat streak mosaic virus resistance from Agropyron intermedium into wheat. Crop Sci 36:857–861

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996b) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Qi LL, Wilson DL, Chang ZL, Seifers DL, Martin TJ, Fritz AK, Gill BS (2009) Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci 49:1221–1226

    Article  CAS  Google Scholar 

  • Friebe B, Liu W, Qi LL, Wilson DL, Raupp WJ, Poland J, Bowden RL, Fritz AK, Seifers DL, Gill BS (2012) Notice of release of KS12WGGRC59 wheat streak mosaic virus- and Triticum mosaic virus-resistant wheat germ plasm. Kans Agric Exp State Manhattan, Kans Ann Wheat Newslet 57:280

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Gill BS, Friebe B, Wilson DL, Martin TJ, Cox TS (1995) Registration of KS93WGRC27 wheat streak mosaic virus-resistant T4DL·4Ai#2S wheat germplasm. Crop Sci 35:1236–1237

    Article  Google Scholar 

  • Gill BS, Friebe B, Qi LL, Wilson DL, Raupp WL, Fritz AK, Seifers DL, Martin TJ, Pumphrey MO (2008) Notice of release of KS08WGGRC50 wheat streak mosaic virus- and Triticum mosaic virus-resistant hard red winter wheat germplasm. Agric Exp Stn Coop Ext Serv Release Kans State Univ Manhattan Ann Wheat Newslet 54:170

    Google Scholar 

  • Graybosch RA, Peterson CJ, Baenziger PS, Baltensperger DD, Nelson LA, Jin Y, Kolmer J, Seabourn B, French R, Hein G, Martin TJ, Beecher B, Schwarzacher T, Heslop-Harrison P (2009) Registration of ‘Mace’ hard red winter wheat. J Plant Regist 3:51–56

    Article  Google Scholar 

  • Haley SD, Martin TJ, Quick JS, Seifers DL, Stromberger JA, Clayshulte SR, Clifford BL, Peairs FB, Rudolph JB, Johnson JJ, Gill BS, Friebe B (2002) Registration of CO960293-2 wheat germplasm resistant to wheat streak mosaic virus and Russian wheat aphid. Crop Sci 42:1381–1382

    Article  Google Scholar 

  • Haley SD, Johnson JJ, Peairs FB, Stromberger JA, Heaton EE, Seifer SA, Kottke RA, Rudolph JB, Bai G, Bowden RL, Chen M-S, Chen X, Jin Y, Kolmer JA, Chen R, Seabourn BW (2011) Registration of ‘Snowmass’ wheat. J Plant Regist 5:1–4

    Article  Google Scholar 

  • Kishii M, Wang RRC, Tsujimoto H (2005) GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J Genet Plant Breed 41:92–95

    Google Scholar 

  • Kole C (2011) Wild crop relatives: genomic and breeding resources: cereals. Springer, Berlin, New York

    Book  Google Scholar 

  • Lay CL, Wells DG, Gardner WAS (1971) Immunity from wheat streak mosaic virus in irradiated Agrotricum progenies. Crop Sci 11:431–432

    Article  Google Scholar 

  • Liu W, Seifers DL, Qi LL, Friebe B, Gill BS (2011) A compensating wheat-Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci 51:2382–2390

    Article  CAS  Google Scholar 

  • Lu H, Price J, Devkota R, Rush C, Rudd J (2011) A dominant gene for resistance to wheat streak mosaic virus in winter wheat line CO960293-2. Crop Sci 51:5–12

    Article  Google Scholar 

  • Mahelka V, Kopecky D, Pastova L (2011) On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: poaceae, Triticeae). BMC Evol Biol 11:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin TJ, Harvey TL, Livers RW (1976) Resistance to wheat streak mosaic virus and its vector, Aceria tulipae. Phytopathology 66:346–349

    Article  Google Scholar 

  • Martin TJ, Zhang G, Fritz AK, Schroyer JP (2013) Clara CL hard white wheat. Kansas State University Agricultural Experimental Station Cooperative Extension Service L913

  • McKinney HH, Sando WJ (1951) Susceptibility and resistance of the wheat streak mosaic virus in the genera Triticum, Agropyron, Secale, and certain hybrids. Plant Dis 35:476–478

    Google Scholar 

  • McNeil JE, French R, Hein GL, Baenziger PS, Eskridge KM (1996) Characterization of genetic variability among natural populations of wheat streak mosaic virus. Phytopathology 86:1222–1227

    Article  CAS  Google Scholar 

  • Molnár-Láng M, Ceoloni C, Doležel Je (2015) Alien introgression in wheat. Cytogenetics, molecular biology, and genomics. Springer Cham, Heidelberg

    Book  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  CAS  PubMed  Google Scholar 

  • Seifers DL, Martin TJ, Harvey TL, Haber S, Haley SD (2006) Temperature sensitivity and efficacy of wheat streak mosaic virus resistance derived from C0960293 wheat. Plant Dis 90:623–628

    Article  Google Scholar 

  • Seifers DL, Martin TJ, Harvey TL, Haber S (2007) Temperature sensitive wheat streak mosaic virus resistance identified in KS03HW12 wheat. Plant Dis 91:1029–1033

    Article  CAS  Google Scholar 

  • Seifers DL, Martin TJ, Harvey TL, Fellers JP, Stack JP, Ryba-White M, Haber S, Krokhin O, Spicer V, Lovat N, Yamchuk A, Standing KG (2008) Triticum mosaic virus: a new virus isolated from wheat in Kansas. Plant Dis 92:808–817

    Article  CAS  Google Scholar 

  • Seifers DL, Martin TJ, Harvey TL, Fellers JP, Michaud JP (2009) Identification of the wheat curl mite as the vector of Triticum mosaic virus. Plant Dis 93:25–29

    Article  Google Scholar 

  • Seifers DL, Martin TJ, Fellers JP (2010) An experimental host range for Triticum mosaic virus. Plant Dis 94:1125–1131

    Article  Google Scholar 

  • Sharma HC, Gill BS, Uyemoto JK (1984) High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic virus viruses. Phytophatology 119:143–147

    Google Scholar 

  • Sim T, Willis WG, Eversmeyer MG (1988) Kansas Plant disease survey. Plant Dis 72:832–836

    Article  Google Scholar 

  • Stoddard SL, Gill BS, Lommel SA (1987a) Genetic expression of wheat streak mosaic virus resistance in two wheat-wheat grass hybrids. Crop Sci 27:514–519

    Article  Google Scholar 

  • Stoddard SL, Gill BS, Lommel SA (1987b) Evaluation of wheat germplasm for resistance to wheat streak mosaic virus by symptomatology, ELISA, and slot-blot hybridization. Plant Dis 71:714–719

    Article  Google Scholar 

  • Tang S, Li Z, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352

    Article  CAS  Google Scholar 

  • Wells DG, Sze-Chung R, Lay CL, Gardner WAS, Buchenau GW (1973) Registration of CI15092 and CI15093 wheat germplasm. Crop Sci 13:776

    Article  Google Scholar 

  • Wells DG, Kota RS, Sandhu HS, Gardner WAS, Finney KF (1982) Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat streak mosaic virus. Crop Sci 22:1277–1278

    Article  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Martin TJ, Fritz AK, Miller R, Chen M-S, Bowden RL, Johnson JJ (2015) Registration of Oakley CL wheat. J Plant Regist 9:190–195

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. John Raupp for critical editorial review of the manuscript and Duane Wilson and Jeff Ackerman for technical assistance. This research was supported by grants from the Kansas Wheat Commission, the Kansas Crop Improvement Association and WGRC I/UCRC NSF contract 1338897. This is contribution number 17-079-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Additional information

Communicated by P. Langridge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilova, T.V., Zhang, G., Liu, W. et al. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor Appl Genet 130, 549–556 (2017). https://doi.org/10.1007/s00122-016-2834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2834-8

Keywords

Navigation