Skip to main content
Log in

Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Spot blotch disease resistance gene Sb3 was mapped to a 0.15 centimorgan (cM) genetic interval spanning a 602 kb physical genomic region on chromosome 3BS.

Abstract

Wheat spot blotch disease, caused by B. sorokiniana, is a devastating disease that can cause severe yield losses. Although inoculum levels can be reduced by planting disease-free seed, treatment of plants with fungicides and crop rotation, genetic resistance is likely to be a robust, economical and environmentally friendly tool in the control of spot blotch. The winter wheat line 621-7-1 confers immune resistance against B. sorokiniana. Genetic analysis indicates that the spot blotch resistance of 621-7-1 is controlled by a single dominant gene, provisionally designated Sb3. Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Sb3 is located on chromosome arm 3BS linked with markers Xbarc133 and Xbarc147. Seven and twelve new polymorphic markers were developed from the Chinese Spring 3BS shotgun survey sequence contigs and 3BS reference sequences, respectively. Finally, Sb3 was mapped in a 0.15 cM genetic interval spanning a 602 kb physical genomic region of Chinese Spring chromosome 3BS. The genetic and physical maps of Sb3 provide a framework for map-based cloning and marker-assisted selection (MAS) of the spot blotch resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C (2013) The inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J 74:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology 93:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Yang X, Cavaletto JR, Hu X, Buechley G, Ohm HW, Shaner G, Goodwin SB (2004a) Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Wallwork H, Goodwin SB (2004b) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    Article  CAS  Google Scholar 

  • Arraiano LS, Worland AJ, Ellerbrook C, Brown JKM (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor Appl Genet 103:758–764

    Article  CAS  Google Scholar 

  • Arraiano LS, Chartrain L, Bossolini E, Slatter HN, Keller B, Brown JKM (2007) A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol 56:73–78

    Article  CAS  Google Scholar 

  • Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92:439–445

    Article  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Browne RA, Cooke BM (2004) Development and evaluation of an in vitro detached leaf assay for pre-screening resistance to Fusarium head blight in wheat. Eur J Plant Pathol 110:91–102

    Article  Google Scholar 

  • Chand R, Pandey SP, Singh HV, Kumar S, Joshi AK (2003) Variability and its probable cause in natural populations of spot blotch pathogen Bipolaris sorokiniana of wheat (T. aestivum L.) in India. J Plant Dis Protec 110:27–35

    Google Scholar 

  • Chartrain L, Berry ST, Brown JKM (2005a) Resistance of wheat line Kavkaz-K4500 L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95:664–671

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F, Brown JKM (2005b) Genetics of resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theor Appl Genet 110:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Sourdille P, Bernard M, Brown JKM (2009) Identification and location of Stb9, a gene for resistance to Septoria tritici blotch in wheat cultivars courtot and tonic. Plant Pathol 58:547–555

    Article  CAS  Google Scholar 

  • Chaurasia S, Chand R, Joshi AK (2000) Relative dominance of Alternaria triticina Pras. et Prab. and Bipolaris sorokiniana (Sacc.) shoemaker in different growth stages of wheat (T. aestivum L.). Z Pflanzenk Pflanzen 107:176–181

    Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury JM, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  PubMed  Google Scholar 

  • Diener AC, Ausubel FM (2005) Resistance to Fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubin HJ, Duveiller E (2000) Helminthosporium leaf blights of wheat: integrated control and prospects for the future. In: Mitra DK (ed) Proceeding of international conference on integrated plant disease management for sustainable agriculture. New Delhi, India, pp 575–579

    Google Scholar 

  • Dubin HJ, van Ginkel M (1991) The status of wheat diseases and disease research in warmer areas. In: Saunders DA (ed) Wheat for nontraditional warmer areas. CIMMYT, Mexico, pp 125–145

    Google Scholar 

  • Faris JD, Zhang ZC, Lu HJ, Lu SW, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng J, Ma H, Hughes GR (2004) Genetics of resistance to Stagonospora nodorum blotch of hexaploid wheat. Crop Sci 44:2043–2048

    Article  Google Scholar 

  • Friesen TL, Faris JD (2010) Characterization of the wheat-Stagonospora nodorum disease system: what is the molecular basis of this quantitative necrotrophic disease interaction? Can J Plant Pathol 32:20–28

    Article  CAS  Google Scholar 

  • Friesen TL, Chu CG, Xu SS, Faris JD (2012) SnTox5-Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol Plant Pathol 13:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela HA, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Y, Faris JD, Liu Z, Kim YM, Syme RA, Oliver RP, Xu SS, Friesen TL (2015) Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem. Mol Plant Microbe Interact 28(5):615–625

    Article  CAS  PubMed  Google Scholar 

  • Ghaffary SMT, Robert O, Laurent V, Lonnet P, Margale E, van der Lee TAJ, Visser RGF, Kema GHJ (2011) Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor Appl Genet 123:741–754

    Article  PubMed  Google Scholar 

  • Ghaffary SMT, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ (2012a) New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124:125–142

    Article  CAS  Google Scholar 

  • Ghaffary SMT, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ, Robert O, Kema GHJ (2012b) New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124:125–142

    Article  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal SK, Prasad SLC, Sharma S, Kumar S, Prasad R, Pandey SP, Chand R, Joshi AK (2007) Identification of molecular marker and aggressiveness for different groups of Bipolaris sorokiniana isolates causing spot blotch disease in wheat (Triticum aestivum L.). Curr Microbiol 55:135–141

    Article  CAS  PubMed  Google Scholar 

  • Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, Jing RL, Zhang C, Ma YZ, Gao LF, Gao C, Spannagl M, Mayer KFX, Li D, Pan SK, Zheng FY, Hu Q, Xia XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, Xia QJ, Lu P, Wang JY, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, Yang HM, Liu X, He ZH, Mao L, Wang J, Consor IWGS (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Joshi AK, Chand R, Kumar S, Singh RP (2004) Leaf tip necrosis: a phenotypic marker associated with resistance to spot blotch disease in wheat. Crop Sci 44:792–796

    Article  Google Scholar 

  • Joshi AK, Ortiz-Ferrara G, Crossa J, Singh G, Alvarado G, Bhatta MR, Duveiller E, Sharma RC, Pandit DB, Siddique AB, Das SY, Sharma RN, Chand R (2007) Associations of environments in South Asia based on spot blotch disease of wheat caused by Cochliobolus sativus. Crop Sci 47:1071–1081

    Article  Google Scholar 

  • Kumar J, Schafer P, Huckelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195

    Article  CAS  PubMed  Google Scholar 

  • Kumar U, Joshi AK, Kumar S, Chand R, Roder M (2009) Mapping of resistance to spot blotch disease caused by Bipolaris sorokiniana in spring wheat. Theor Appl Genet 118:783–792

    Article  CAS  PubMed  Google Scholar 

  • Kumar U, Joshi AK, Kumar S, Chand R, Roder MS (2010) Quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokiniana in wheat (T. aestivum L.) lines ‘Ning 8201’ and ‘Chirya 3’. Mol Breed 26:477–491

    Article  Google Scholar 

  • Kumar S, Röder M, Tripathi S, Kumar S, Chand R, Joshi A, Kumar U (2015) Mendelization and fine mapping of a bread wheat spot blotch disease resistance QTL. Mol Breed 35:1–10

    Article  Google Scholar 

  • Lillemo M, Joshi AK, Prasad R, Chand R, Singh RP (2013) QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet 126:711–719

    Article  CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmaker/eXP3.0 Whitehead Institute Techn rep, 3rd edn. Whitehead Institute, Cambridge

    Google Scholar 

  • Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvorak J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Meng J (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321

    Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma YQ, Hu YQ, Huo NX, Wang Y, Wang JR, Chen SY, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li WL, Gill BS, Bevan MW, Simkova H, Dolezel J, Song WN, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu TY, Earle ED, Tanksley SD (1993) Map-based cloning of a protein-kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P, Endo TR, Kubaláková M, Cíhalíková J, Dubská Z, Vrána J, Sperková R, Simková H, Febrer M, Clissold L, McLay K, Singh K, Chhuneja P, Singh NK, Khurana J, Akhunov E, Choulet F, Alberti A, Barbe V, Wincker P, Kanamori H, Kobayashi F, Itoh T, Matsumoto T, Sakai H, Tanaka T, Wu J, Ogihara Y, Handa H, Maclachlan PR, Sharpe A, Klassen D, Edwards D, Batley J, Olsen OA, Sandve SR, Lien S, Steuernagel B, Wulff B, Caccamo M, Ayling S, Ramirez-Gonzalez RH, Clavijo BJ, Wright J, Pfeifer M, Spannagl M, Martis MM, Mascher M, Chapman J, Poland JA, Scholz U, Barry K, Waugh R, Rokhsar DS, Muehlbauer GJ, Stein N, Gundlach H, Zytnicki M, Jamilloux V, Quesneville H, Wicker T, Faccioli P, Colaiacovo M, Stanca AM, Budak H, Cattivelli L, Glover N, Pingault L, Paux E, Sharma S, Appels R, Bellgard M, Chapman B, Nussbaumer T, Bader KC, Rimbert H, Wang S, Knox R, Kilian A, Alaux M, Alfama F, Couderc L, Guilhot N, Viseux C, Loaec M, Keller B, Praud S (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788

    Article  Google Scholar 

  • McCartney CA, Brule-Babel AL, Lamari L, Somers DJ (2003) Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. 12th international wheat genetics symposium. Yokohama, Japan

  • Mehta YR (1993) Manejo Integrado de Enfermedadas de TrigoSanta Cruz, Bolivia, 314. CIAT/IAPAR

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Rosyara UR, Duveiller E, Pant K, Sharma RC (2007) Variation in chlorophyll content, anatomical traits and agronomic performance of wheat genotypes differing in spot blotch resistance under natural epiphytotic conditions. Australas Plant Path 36:245–251

    Article  CAS  Google Scholar 

  • Saari EE (1998) Leaf blight diseases and associated soil borne fungal pathogens of wheat in north and south East Asia. In: Duveiller E, Dubin HJ, Reeves J, Mc A (eds) Helminthosporium blights of wheat: spot blotch and tan spot. CIMMYT, Mexico, pp 37–51

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley-mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma RC, Duveiller E (2006) Spot blotch continues to cause substantial grain yield reductions under resource-limited farming conditions. J Phytopathol 154:482–488

    Article  Google Scholar 

  • Shi G, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD (2015) The wheat gene confers susceptibility on recognition of the necrotrophic effector SnTox7. Plant Genome. doi:10.3835/plantgenome2015.02.0007

    Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 96:885–889

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Mergoum M, Ali S, Adhikari TB, Hughes GR (2008a) Genetic analysis of resistance to Pyrenophora tritici-repentis races 1 and 5 in tetraploid and hexaploid wheat. Phytopathology 98:702–708

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Mergoum M, Gonzalez-Hernandez JL, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2008b) Genetics and molecular mapping of resistance to necrosis inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol Breed 21:293–304

    Article  CAS  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379

    Article  CAS  Google Scholar 

  • Somasco OA, Qualset CO, Gilchrist DG (1996) Single-gene resistance to Septoria tritici blotch in the spring wheat cultivar ‘Tadinia’. Plant Breed 115:261–267

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Srivasta OP, Luthra JK, Narula PN (1971) Inheritance of seedling resistance to leaf blight of wheat. Indian J Genet Plant Breed 31:209–211

    Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2006a) Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. X Aegilops tauschii Coss.). Crop Sci 46:1212–1217

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2006b) Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed 125:318–322

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2008) Chromosome location of a gene conferring resistance to Pyrenophora tritici-repentis in Ethiopian wheat cultivars. Euphytica 162:423–430

    Article  CAS  Google Scholar 

  • Tadesse W, Reents HJ, Hsam SLK, Zeller FJ (2010) Monosomic analysis of tan spot resistance gene in the winter wheat cultivar ‘Arina’. Plant Breed 129:477–479

    CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) The NB–ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8(7):R226–R228

    Article  PubMed  Google Scholar 

  • Villareal RL, Mujeebkazi A, Gilchrist LI, Deltoro E (1995) Yield loss to spot blotch in spring bread wheat in warm nontraditional wheat production areas. Plant Dis 79:893–897

    Article  Google Scholar 

  • Wang ZZ, Cui Y, Chen YX, Zhang DY, Liang Y, Zhang D, Wu QH, Xie JZ, Ouyang SH, Li DL, Huang YL, Lu P, Wang GX, Yu MH, Zhou SH, Sun QX, Liu ZY (2014) Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theor Appl Genet 127:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wu HB, Qin JX, Han J, Zhao XJ, Ouyang SH, Liang Y, Zhang D, Wang ZZ, Wu QH, Xie JZ, Cui Y, Peng HR, Sun QX, Liu ZY (2013) Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat. PLoS One 8(12):e84691

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253

    Article  Google Scholar 

  • Zhu Z, Bonnett D, Ellis M, Singh P, Heslot N, Dreisigacker S, Gao C, Mujeeb-Kazi A (2014) Mapping resistance to spot blotch in a CIMMYT synthetic-derived bread wheat. Mol Breed 34:1215–1228

    Article  CAS  Google Scholar 

  • Zillinsky F (1983) Common diseases of small grain cereals, a guide to identification. CIMMYT, Mexico, p 141

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation of China (31571642, 31210103902), Ministry of Science & Technology of China (2011AA100104), and Ministry of Education (MOE) of China (111-02-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest.

Additional information

Communicated by H. Buerstmayr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Liang, Y., Li, D. et al. Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum). Theor Appl Genet 129, 577–589 (2016). https://doi.org/10.1007/s00122-015-2649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2649-z

Keywords

Navigation