Skip to main content
Log in

Forcing the shift of the crossover site to proximal regions in wheat chromosomes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Terminal deletions obligate the first crossover to be formed in more proximal positions. This increases the recombination rate in intercalary intervals but not in the proximity of the centromere.

Abstract

Crossovers are not uniformly distributed along chromosomes in wheat. They take place preferentially in distal positions. The effect of the chromosomal architecture on crossover positioning has been analyzed from the chiasmate bonds at metaphase I formed by the truncated arms of 51 terminal deletion lines of eight wheat chromosomes. Chromosome 4A and the B genome chromosomes, in their standard or truncated conformation, and their arms, were identified by C-banding. Chromosomes studied show a similar chiasma distribution. Reduction of the size of the truncated arms is accompanied by a gradual decrease of the chiasma frequency in chromosome arms 1BL, 3BS, 3BL, 4BL, 5BS, 5BL, 6BL, 7BS, 7BL and 4AL. In chromosome arm 1BS, most chiasmata are concentrated in the distal half of the satellite and, in 4AS, in the distal 24 %. The arms 2BS, 2BL and 6BS do not show a simple decreasing gradient of the recombination rate, the chiasma frequency increases in subdistal intervals compared to more distal regions. Although terminal deletions usually induce an increase of chiasma frequency in intercalary regions, the level of intact chromosome arms is maintained in only a few deletion lines. Truncated arms containing only the 20 % proximal of the intact arm do not form chiasmata. The relationships of chiasma positioning with chromatin structure and genome organization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B et al (2003a) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akhunov ED, Akhunova AR, Linkiewicz AM, Dubkovski J, Hummel D et al (2003b) Synteny perturbations between wheat homoeologous chromosomes by locus duplications and deletions correlate with recombination rates along chromosome arms. PNAS 100:10836–10841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albini SM, Jones GH (1988) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. II. Pachytene observations: the SC karyotype and the correspondence of late recombination nodules and chiasmata. Genome 30:399–410

    Article  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD et al (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ et al (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166:1923–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassi FM, Kumar A, Zhang Q, Paux E, Huttner E et al (2013) Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theor Appl Genet 126:1977–1990

    Article  CAS  PubMed  Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  PubMed  Google Scholar 

  • Curtis CA, Lukaszewski AJ, Chrzastek M (1991) Metaphase-I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in wheat. Genome 34:553–560

    Article  Google Scholar 

  • Darlington CD (1935) The internal mechanics of the chromosomes II. Prophase paring at meiosis in Fritillaria. Proc Roy Soc Lond B 118:59–73

    Article  Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A et al (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination ‘‘hot spots’’. Genome Res 16:106–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fogwill M (1958) Differences in crossing over and chromosome size in the sex cells of Lilium and Fritillaria. Chromosoma 9:493–504

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Mukai Y (1993) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giráldez R, Cermeño MC, Orellana J (1979) Comparison of C-banding pattern in the chromosomes of inbred lines and open pollinated varieties of rye. Z Pflanzenzuecht 83:40–48

    Google Scholar 

  • Harper L, Golubovskaya I, Cande WZ (2004) A bouquet of chromosomes. J Cell Sci 117:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R et al (2012) Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell 24:4096–4109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higgins JD, Osman K, Jones GH, Franklin FCH (2014) Factors underlying restricted crossover localization in barley meiosis. Annu Rev Genet 48:29–47

    Article  CAS  PubMed  Google Scholar 

  • Holm PB (1986) Chromosome pairing and chiasma formation in allohexaploid wheat: Triticum aestivum analyzed by spreading of meiotic nuclei. Carlsberg Res Commun 51:239–294

    Article  Google Scholar 

  • Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM et al (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones GH, Franklin FCH (2006) Meiotic crossing-over: obligation and interference. Cell 126:246–248

    Article  CAS  PubMed  Google Scholar 

  • Jones LE, Rybka K, Lukaszewski AJ (2002) The effect of a deficiency and a deletion on recombination in chromosome 1BL in wheat. Theor Appl Genet 104:1204–1208

    Article  CAS  PubMed  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    Article  CAS  PubMed  Google Scholar 

  • Kempana C, Riley R (1962) Relationships between the genetic effects of deficiencies for chromosomes III and V on meiotic pairing in Triticum aestivum. Nature 195:1270–1273

    Article  Google Scholar 

  • Künzel G, Waugh R (2002) Integration of microsatellite markers into the translocation-based physical RFLP map of barley chromosome 3H. Theor Appl Genet 105:660–665

    Article  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–712

    PubMed Central  PubMed  Google Scholar 

  • Lukaszewski AJ (2008) Unexpected behaviour of an inverted rye chromosome arm in wheat. Chromosoma 117:569–578

    Article  PubMed  Google Scholar 

  • Lukaszewski AJ, Curtis CA (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86:121–127

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ, Kopecky D, Linc G (2012) Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution. Chromosoma 121:201–208

    Article  PubMed  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. PNAS 106:15780–15785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez M, Cuñado N, Carcelén N, Romero C (2001) The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat Triticum aestivum. Theor Appl Genet 103:398–405

    Article  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naranjo T (2014) Dynamics of rye telomeres in a wheat background during early meiosis. Cytogenet Genome Res 143:60–68

    Article  PubMed  Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giráldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882

    Article  Google Scholar 

  • Naranjo T, Valenzuela NT, Perera E (2010) Chiasma frequency is region-specific and chromosome conformation-dependent in a rye chromosome added to wheat. Cytogenet Genome Res 129:133–142

    Article  CAS  PubMed  Google Scholar 

  • Newton WCF, Darlington CD (1930) Fritillaria meleagris chiasma formation and distribution. J Genet 22:1–14

    Article  Google Scholar 

  • Qi LL, Friebe B, Gill BS (2002) A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Res 10:645–654

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sallee PJ, Kimber G (1978) An analysis of the pairing of wheat telocentric chromosomes. In: Ramanujan S (ed) Proceedings of 5th International Wheat Genet Symposium, New Dehli, India, pp 408–419

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2:621–627

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Mo Agric Exp Stn Res Bull 572:58

    Google Scholar 

  • Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. In: Gustafson JP (ed) Gene manipulation in plant improvement. In: Proceedings of 16th Stadler Genet Symposium. Plenum Press, New York, pp 295–300

  • See DR, Brooks S, Nelson JC, Brown-Guedira G, Friebe B, Gill BS (2006) Gene evolution at the ends of wheat chromosomes. PNAS 103:4162–4167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valenzuela NT, Perera E, Naranjo T (2012) Dynamics of rye chromosome 1R regions with high and low crossover frequency in homology search and synapsis development. PLoS One 7(4):e36385. doi:10.1371/journal.pone.0036385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Mizuno H, Hayashi-Tsugane M, Ito Y, Chiden Y et al (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36:720–730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant AGL2012-38852 from Dirección General de Investigación Cientifíca y Técnica, Ministerio de Economía y Competitividad of Spain. I would like to thank T. R. Endo and the National BioResource Project-Wheat, Japan, for kindly supplying the deletion stocks, and to E Perera for her technical assistance.

Conflict of interest

The author declares that he has no conflict of interest.

Ethical standard

The author states that the experiments comply with the current laws in Spain where they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Naranjo.

Additional information

Communicated by S. S. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naranjo, T. Forcing the shift of the crossover site to proximal regions in wheat chromosomes. Theor Appl Genet 128, 1855–1863 (2015). https://doi.org/10.1007/s00122-015-2552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2552-7

Keywords

Navigation