Skip to main content
Log in

Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F6 population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ano G, Prior P, Manyri J, Vincent C (1990) Stratégies d’amélioration de l’aubergine (Solanum melongena L.) pour la résistance au flétrissement bactérien causé par Pseudomonas solanacearum E.F.S. Journées maraîchères CIRAD-ORSTOM-INRA 570–579

  • Ano G, Hébert Y, Prior P, Messiaen CM (1991) A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L. × Solanum melongena L. Agronomie 11:555–560

    Article  Google Scholar 

  • Broman K, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riosdan TP, Dweikat I (2004) Molecular characterization of buffalograss using sequence-related amplified polymorphism markers. Theor Appl Genet 108:328–334

    Article  PubMed  CAS  Google Scholar 

  • Buddenhagen I, Sequeira L, Kelman A (1962) Designation of races in Pseudomonas solanacearum. Phytopathology 52:726

    Google Scholar 

  • Cao BH, Lei JJ, Wang Y, Chen GJ (2009) Inheritance and identification of SCAR linked to bacterial wilt-resistance in eggplant. Afr J Biotechnol 8:5201–5207

    CAS  Google Scholar 

  • Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121

    Article  PubMed  CAS  Google Scholar 

  • Chen NC, Li HM, Wang JF (1997) Bacterial wilt resistance sources in eggplant, Solanum melongena. Capsicum Eggplant Newsl 14:4–5

    CAS  Google Scholar 

  • Cook D, Sequeira L (1994) Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, pp 77–93

    Google Scholar 

  • Cook D, Barlow E, Sequeira L (1989) Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and hypersensitive response. Mol Plant Microbe Interact 2:113–121

    Article  Google Scholar 

  • Daly P (1973) Obtention d’une nouvelle variété d’aubergine au Pseudomonas solanacearum. Agronomie Tropicale Série 1 : Riz et Riziculture et Cultures Vivrières Tropicales 28:28–33

  • Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 573–644

  • Dintinger J, Verger D, Caiveau S, Risterucci AM, Gilles J, Chiroleu F, Courtois B, Reynaud B, Hamon P (2005) Genetic mapping of maize stripe disease resistance from the Mascarene source. Theor Appl Genet 111:347–359

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley S (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, USA, pp 9–28

    Google Scholar 

  • Fegan M, Prior P (2005) How complex is the “Ralstonia solanacearum species complex”. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Madison, pp 449–462

    Google Scholar 

  • Fukuoka H, Miyatake K, Nunome T, Negoro S, Yamaguchi H, Ohyama A (2010) Development of an integrated linkage map using genomic SSR and gene based SNPs markers in eggplant. In: Prohens J, Rodríguez A (eds) Advances in genetics and breeding of capsicum and eggplant. Editoríal de la universitat Politèchnica de Valèncía, Valencía, pp 359–375

    Google Scholar 

  • Gonzalez WG, Summers WL (1995) A comparison of Pseudomonas solanacearum- resistant tomato cultivars as hybrid parents. J Am Soc Hortic Sci 120:891–895

    Google Scholar 

  • Granada G, Sequeira L (1983) A new selective medium for Pseudomonas solanacearum. Plant Dis 67:1084–1088

    Article  Google Scholar 

  • Grimault V, Prior P (1994) Invasiveness of Pseudomonas solanacearum in tomato, eggplant and pepper: a comparative study. Eur J Plant Pathol 100:259–267

    Article  Google Scholar 

  • Grimault V, Anais G, Prior P (1994) Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. Plant Pathol 43:663–668

    Article  Google Scholar 

  • Grimault V, Prior P, Anais G (1995) A monogenic dominant resistance of tomato to bacterial wilt in Hawaii 7996 is associated with plant colonization by Pseudomonas solanacearum. J Phytopathol 143:349–352

    Article  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between distance loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Hallauer AR, Miranda GV (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hanson PM, Wang JF, Licardo O, Hanudin SY, Mah SY, Hartman GL, Lin YC, Chen JT (1996) Variable reactions of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31:143–146

    Google Scholar 

  • Hanudin, Hanafiah Gaos MA (1993) Screening of eggplant accessions for resistance to bacterial wilt. In: Hartman GL, Hayward AC (eds) Bacterial wilt ACIAR proceedings No 45. ACIAR, Canberra, pp 191–192

  • Hayward AC (1964) Characteristics of Pseudomonas solanacearum. J Appl Bacteriol 27:265–277

    Article  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  PubMed  CAS  Google Scholar 

  • Hayward AC (1994) The hosts of Pseudomonas solanacearum. In: Hayward ACH, Hartman GL (ed) Bacterial wilt—the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, pp 9–24

  • He LY, Sequeira L, Kelman A (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis 67:1357–1361

    Article  Google Scholar 

  • Henderson C (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  PubMed  CAS  Google Scholar 

  • Horita M, Tsuchiya K (2001) Genetic diversity of Japanese strains of Ralstonia solanacearum. Phytopathology 91:399–407

    Article  PubMed  CAS  Google Scholar 

  • Ivey MLL, McSpadden Gardener BB, Opina N, Miller SA (2007) Diversity of Ralstonia solanacearum infecting eggplant in the Philippines. Phytopathology 97:1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Jaunet TX, Wang JF (1999) Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320–327

    Article  PubMed  CAS  Google Scholar 

  • Jeger MJ, Viljanen-Robinson S (2001) The use of area under the disease progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet 102:32–40

    Article  Google Scholar 

  • Ji P, Allen C, Sanchez-Perez A, Yao J, Elphinstone JG, Jones JB, Momol MT (2007) New diversity of Ralstonia solanacearum strains associated with vegetable and ornamental crops in Florida. Plant Dis 91:195–203

    Article  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Kelman A (1998) One hundred and one years of research on bacterial wilt. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspects. Springer, Berlin, pp 1–5

    Google Scholar 

  • Knapp S, Stroup W, Ross W (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 9:257–262

    Google Scholar 

  • Lafortune D, Béramis M, Daubèze A-M, Boissot N, Palloix A (2005) Partial resistance of pepper to bacterial wilt is oligogenic and stable under tropical conditions. Plant Dis 89:501–506

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li HP, Goth RW, Barksdale TH (1988) Evaluation of resistance to bacterial wilt in eggplant. Plant Dis 72:437–439

    Article  Google Scholar 

  • Li M, Wang Y, Tian S, Luo Z, Wang X (2006) Genetic analysis of resistance to bacterial wilt and identification of an associated AFLP marker in eggplant (Solanum melongena). Acta Horticulturae Sinica 33:869–872

    CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Mahbou Somo Toukam G (2010) Diversité de Ralstonia solanacearum au Cameroun et bases génétiques de la résistance chez le piment (Capsicum annuum) et les solanacées. Thèse. Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech)

  • Mahbou Somo Toukam G, Cellier G, Wicker E, Guilbaud C, Kahane R, Allen C, Prior P (2009) Broad diversity of Ralstonia solanacearum strains in Cameroon. Plant Dis 93:1123–1130

    Article  Google Scholar 

  • Mangin B, Thoquet P, Olivier J, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172

    PubMed  CAS  Google Scholar 

  • Miao L, Shou S, Cai J, Jiang F, Zhu Z, Li H (2009) Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep 36:479–486

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Yamakawa K (1979) Resistance of selected eggplant cultivars and related wild Solanum species to bacterial wilt (Pseudomonas solanacearum). Bull Vegetable Ornam Crops 6:1–10

    Google Scholar 

  • Mohamed M, Umaharan P, Phelps RH (1997) Genetic nature of bacterial wilt resistance in tomato (lycopersicon esculentum Mill.) accession La 1421. Euphytica 96:323–326

    Article  Google Scholar 

  • Norman DJ, Zapata M, Gabriel DW, Duan YP, Yuen JMF, Mangravita-Novo A, Donahoo RS (2009) Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America. Phytopathology 99:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Nunome T, Yoshida T, Hirai M (1998) Genetic linkage map of eggplant (Solanum melongena). In: Palloix A, Daunay MC (eds) Xth EUCARPIA meeting on genetics and breeding on Capsicum & Eggplant. INRA Paris, Avignon, pp 239–242

    Google Scholar 

  • Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26

    Article  CAS  Google Scholar 

  • Nunome T, Suwabe K, Iketani H, Hirai M, Wricke G (2003a) Identification and characterization of microsatellites in eggplant. Plant Breed 122:256–262

    Article  CAS  Google Scholar 

  • Nunome T, Suwabe K, Ohyama A, Fukuoka H (2003b) Characterization of trinucleotide microsatellites in eggplant. Breed Sci 53:77–83

    Article  CAS  Google Scholar 

  • Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153

    Article  PubMed  Google Scholar 

  • Pegg KG, Moffett M (1971) Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust J Exp Agric Anim Husbandry 11:696–698

    Article  Google Scholar 

  • Ponnuswami V, Chen NC, Shanmugasundaram S (1996) New sources of resistance to bacterial wilt in eggplant. TVIS Newsl 1:16

    Google Scholar 

  • Poussier S, Vandewalle P, Luisetti J (1999) Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region. Appl Environ Microbiol 65:2184–2194

    PubMed  CAS  Google Scholar 

  • Prior P, Bart S, Leclercq S, Darrasse A, Anais G (1996) Resistance to bacterial wilt in tomato as discerned by spread of Pseudomonas (Burholderia) solanacearum in the stem tissues. Plant Pathol 45:720–726

    Article  Google Scholar 

  • Rao MVB, Sohi HS, Vijay OP (1976) Reaction of some varieties of brinjal (Solanum melongena L.) Pseudomonas solanacearum Sm. Vegetable Sci 3:61–64

    Google Scholar 

  • Sakata Y, Monma S, Narikawa T, Komochi S (1996) Evaluation of resistance to bacterial wilt and Verticillium wilt in eggplants (Solanum melongena L) collected in Malaysia. J Jpn Soc Hortic Sci 65:81–88

    Article  Google Scholar 

  • R Development Core Team (2011) R: A Language and Environment for Statistical Computing. In: Computing RFfS (ed) Vienna, Austria

  • Sanchez Perez A, Mejia L, Fegan M, Allen C (2008) Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurrence of tomato fruit infection. Plant Pathol 57:320–331

    Article  Google Scholar 

  • Scott JW, Somodi GC, Jones JB (1988) Bacterial spot resistance is not associated with bacterial wilt resistance in tomato. Proc Florida State Hortic Soc 101:390–392

    Google Scholar 

  • Sitaramaiah K, Sinha SK, Vishwakarma SN (1985) Reaction of brinjal cultivars to bacterial wilt caused by Pseudomonas solanacearum. Indian J Mycol Plant Pathol 14:218–222

    Google Scholar 

  • Stagel A, Portis E, Toppino L, Rotino G, Lanteri S (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics 9:357

    Article  PubMed  Google Scholar 

  • Sun B, Liao Y, Li Z, Li Z, Sun G (2008) AFLP markers linked to genes related to bacterial wilt resistance of eggplant. Mol Plant Breed 6:929–934

    CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley N (1996) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol Plant Microbe Interact 9:826–836

    Article  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. JQTL 2

  • Vasse J, Danoun S, Trigalet A (2005) Microscopic studies of root infection in resistant tomato cultivar Hawaii7996. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, pp 285–291

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprint. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Chen JT, Li HM (1998) Resistance sources to bacterial wilt in eggplant (Solanum melongena). In: Prior P, Allen C, Elphinstone JG (eds) Bacterial wilt disease—molecular and ecological aspects. Springer, Berlin, pp 284–289

    Google Scholar 

  • Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13:6–13

    Article  PubMed  CAS  Google Scholar 

  • Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Prior P (2009) Epidemiological evidence for the emergence of a new pathogenic variant of Ralstonia solanacearum in Martinique (French West Indies). Plant Pathol 58:853–861

    Article  Google Scholar 

  • Wu FN, Eannetta NT, Xu YM, Tanksley SD (2009) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Pan Z, Prior P, Zhang Z, Zhang H, Zhang L, He L, Feng J (2009) Genetic diversity of Ralstonia solanacearum strains from China. Eur J Plant Pathol 125:641–653

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. Palloix, M. Pitrat, M. Causse, and V. Lefebvre (Institut National de la Recherche Agronomique (INRA), UR 1052) for their help in analysing the segregation results as well as for early review of this paper. We also thank E. Chapier-Fontaine, J. J. Chéron, J. M. Baptiste and S. Lebon (Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD), Réunion) for providing technical assistance. This work was funded by De Ruiter Seeds, Enza Zaden, Gautier Semences, Nunhems, Rijk Zwaan, and Vilmorin & Cie; the European Regional Development Funds (FEDER) of the European Union, Conseil Régional de la Réunion also provided financial support as part of the programme “Lutte génétique contre les maladies émergentes chez les solanées maraîchères”(GENETOM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Wicker or J. Dintinger.

Additional information

Communicated by I. Paran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Supplementary material 2 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebeau, A., Gouy, M., Daunay, M.C. et al. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor Appl Genet 126, 143–158 (2013). https://doi.org/10.1007/s00122-012-1969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1969-5

Keywords

Navigation