Skip to main content
Log in

Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Architecture of the rice inflorescence, which is determined mainly by the morphology, number and length of primary and secondary inflorescence branches, is an important agronomical trait. In the current study, we characterized a novel dense and erect panicle (EP) mutant, dep3, derived from the Oryza sativa ssp. japonica cultivar Hwacheong treated with N-methyl-N-nitrosourea. The panicle of the dep3 mutant remained erect from flowering to full maturation, whereas the panicle of the wild type plant began to droop after flowering. The dep3 mutation also regulated other panicle characteristics, including panicle length, grain shape and grain number per panicle. Anatomical observations revealed that the dep3 mutant had more small vascular bundles and a thicker culm than wild type plants, explaining the EP phenotype. Genetic analysis indicated that the phenotype with the dense and EP was controlled by a single recessive gene, termed dep3. The DEP3 gene was identified as the candidate via a map-based cloning approach and was predicted to encode a patatin-like phospholipase A2 (PLA2) superfamily domain-containing protein. The mutant allele gene carried a 408 bp genomic deletion within LOC_Os06g46350, which included the last 47 bp coding region of the third exon and the first 361 bp of the 3′-untranslated region. Taken together, our results indicated that the patatin-like PLA2 might play a significant role in the formation of vascular bundles, and that the dep3 mutant may provide another EP resource for rice breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2009) Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol 50:1886–1897

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  PubMed  CAS  Google Scholar 

  • Causse MA, Fulto TM, Cho YG, Ahn SN, Chuncongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Sencond G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    PubMed  CAS  Google Scholar 

  • Chen WF, Xu ZJ, Zhang LB, Zhang WZ, Ma DR (2007) Theories and practices of breeding japonica rice for super high yield. Sci Agric Sin 40:869–874

    Google Scholar 

  • Donald C (1968) The breeding of crop ideotype. Euphytica 17:385–403

    Article  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    Article  PubMed  CAS  Google Scholar 

  • Holk A, Rietz S, Zahn M, Quader H, Scherer GF (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol 130:90–101

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  PubMed  CAS  Google Scholar 

  • Ibanes M, Fabregas N, Chory J, Cano-Delgado AI (2009) Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc Natl Acad Sci USA 106:13630–13655

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Nagasawa N, Nagato Y (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol 282:349–360

    Article  PubMed  CAS  Google Scholar 

  • Ji HS, Chu SH, Jiang W, Cho YI, Hahn JH, Eun MY, McCouch SR, Koh HJ (2006) Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231:364–373

    Article  PubMed  CAS  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100:11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  PubMed  CAS  Google Scholar 

  • La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002

    Article  PubMed  CAS  Google Scholar 

  • Li S, Qian Q, Fu Z, Zeng D, Meng X, Kyozuka J, Maekawa M, Zhu X, Zahng J, Li J, Wang Y (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58:592–605

    Article  PubMed  CAS  Google Scholar 

  • Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C (2010) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20:839–849

  • Mansfeld J (2009) Plant phospholipases A2: perspectives on biotechnological applications. Biotechnol Lett 31:1373–1380

    Article  PubMed  CAS  Google Scholar 

  • Matos AR, Arcy-Lameta A, Franca M, Petres S, Edelman L, Kader JC, Zuily-Fodil Y (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491:188–192

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Narvaez-Vasquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Holk A, Scherer GFE (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action: rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J 16:601–611

    Article  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellins response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, Park JH, Woo MO, Jin Z, An G, Lee J, Koh HJ (2009) Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Qiao Y, Jiang W, Lee JH, Park BS, Cho MS, Piao R, Woo MO, Roh JH, Han L, Paek NC, Seo HS, Koh HJ (2010) An SPL28 gene encoding clathrin-associated adaptor protein complex 1 medium subunit μ1 (AP1M1) is responsible for spotted leaf and early senescence in rice (Oryza sativa L.). New Phytol 185:258–274

    Article  PubMed  CAS  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Rueb S, Meijer AH (2003) The RADICLELESS1 gene is required for vascular pattern formation in rice. Development 130:645–658

    Article  PubMed  CAS  Google Scholar 

  • Scherer GFE, Paul RU, Holk A (2000) Phospholipase A2 in auxin and elicitor signal transduction in cultured parsley cells (Petroselinum crispum L.). Plant Growth Regul 32:123–128

    Article  CAS  Google Scholar 

  • Shimizu M, Takeoka Y (1966) Effects of gibberellin on the development of vascular bundles in panicles. Jpn J Crop Sci 35:105–112

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Nakazaki T, Chen S, Chen W, Satio H, Tsukiyama T, Okumoto Y, Xu Z, Tanisaka T (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet 119:85–91

    Article  PubMed  CAS  Google Scholar 

  • Xu ZJ, Chen WF, Zhou HF, Zhang BL, Yang SR (1996) The physiological and ecological characters and application prospects of erect panicle rice population. Chin Sci Bull 41:1122–1126

    Google Scholar 

  • Xu ZJ, Chen WF, Zhang BL, Yang SR (2005) Design principles and parameters of rice ideal panicle type. Chin Sci Bull 50:2253–2256

    Google Scholar 

  • Yang XC, Hwa CM (2008) Genetic modification of plant architecture and variety improvement in rice. Heredity 101:396–404

    Article  PubMed  CAS  Google Scholar 

  • Yang WY, Devaiah SP, Pan XQ, Isaac G, Welti R, Wang X (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S (1972) Physiological aspects of grain yield. Annu Rev Plant Physiol 23:437–464

    Article  Google Scholar 

  • Zhang QF, Shen BZ, Dai XK, Mei MH, Maroof MAS, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA 91:8675–8679

    Article  PubMed  CAS  Google Scholar 

  • Zhang WZ, Xu ZJ, Chen WF, Zhang LB, Jin XH, WU XD (2002a) The research progress on erect panicle type of rice. J Shenyang Agric Univ 33:471–475

    CAS  Google Scholar 

  • Zhang WZ, Xu ZJ, Zhang LB, Chen WF, Qiu FL, Shao GJ, Hua ZT (2002b) Analysis on evolution for the erect panicle type varieties of rice. J Shenyang Agric Univ 33:161–166

    Google Scholar 

  • Zhou J, Xu Y, Xu P, Deng X, Hu F, Li J, Ren G, Tao D (2008) Introgression and mapping of erect panicle gene from Oryza glaberrima into Oryza Sativa. Rice Genet Newsl 24:18–21

    CAS  Google Scholar 

  • Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324

    Article  PubMed  CAS  Google Scholar 

  • Zhu LH, Gu MH (1979) The inheritance of rice grain shattering. Hereditas 1:17–19

    Google Scholar 

  • Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z (2010) ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics 184:343–350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Technology Development Program (#609001-5) for Agriculture and Forestry of the Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jong Koh.

Additional information

Communicated by T. Close.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, Y., Piao, R., Shi, J. et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122, 1439–1449 (2011). https://doi.org/10.1007/s00122-011-1543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1543-6

Keywords

Navigation