Skip to main content
Log in

Gene expression profiles associated with intersubgenomic heterosis in Brassica napus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In order to understand the genetic mechanism of heterosis that has been observed in hybrids between Brassica napus and partial new-type B. napus which had exotic genome components from relative species, this study focused on the difference in gene expression patterns among partial new-typed B. napus lines, B. napus cultivars and their hybrids using the cDNA amplified fragment length polymorphism technique (cDNA-AFLP) technique. First, three partial new-type B. napus lines were compared with their original parents. One new line contained the exotic genomic components from B. rapa, and the other two new lines were obtained by the introgression of genomic components from B. rapa and B. carinata. The experimental results showed that the introgression of Ar and Cc genome components from B. rapa and B. carinata led to considerable differences in the gene expression profiles of the partial new-type lines when compared with their parents. Secondly, the gene expression profiles of nine cross-combinations between three partial new-type lines and three B. napus cultivars were compared. Twenty transcript-derived fragments (TDFs) associated with intersubgenomic heterosis were randomly selected and converted into PCR-based molecular markers. Some of them were mapped in the confidence intervals of quantitative trait loci (QTLs) for yield and yield-related traits in three segregative populations of B. napus. These results suggested that a proportion of the heterosis-associated TDFs were really responsible for fluctuating seed yield in rapeseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams K, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 23:539–543

    Article  CAS  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Baranyk P, Fábry A (1999) History of the rapeseed (Brassica napus L.) growing and breeding from middle age Europe to Canberra. Proceedings of 10th international rapeseed congress, Canberra, Australia. http://www.regional.org.au/au/gcirc/4/374.htm. Cited 12 Jun 2007

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond Ser A 160:268–282

    Article  Google Scholar 

  • Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67

    Article  CAS  Google Scholar 

  • Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Res 104:103–111

    Article  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple ‘F’ tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    Article  PubMed  CAS  Google Scholar 

  • Fu TD, Yang GS, Tu JX, Ma CZ (2003) The present and future of rapeseed production in China. China Oils Fats 28:11–13

    Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831–845

    Article  PubMed  CAS  Google Scholar 

  • Heath DW, Earle ED (1995) Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theor Appl Genet 91:1129–1136

    Article  CAS  Google Scholar 

  • Hirochika H, Okamoto H, Kakutani T (2000) Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell 12:357–368

    Article  PubMed  CAS  Google Scholar 

  • Hu JG, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    Article  CAS  Google Scholar 

  • Huang Y, Zhang LD, Zhang JW, Yuan DJ, Xu CG, Li XH, Zhou DX, Wang SP, Zhang Q (2006) Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9,198 unique ESTs. Plant Mol Biol 62:579–591

    Article  PubMed  CAS  Google Scholar 

  • Ju CL, Zhang F, Gao YF, Zhang W, Yan JB, Dai JR, Li JS (2006) Cloning, chromosome mapping and expression analysis of an R2R3-MYB gene under-expressed in maize hybrid. Mol Biol Rep 33:103–110

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kidwell KK, Osborn TC (2001) Methods for genetic and physical mapping. In: Beckman J, Osborn TC (eds) Plant genomes. Kluever Academic Publishers, AH Dordrecht, pp 1–13

    Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chèvre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Li MT, Qian W, Meng JL, Li ZY (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426

    Article  PubMed  Google Scholar 

  • Li MT, Chen X, Meng JL (2006) Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B rapa and Cc from Brassica carinata. Crop Sci 46:234–242

    Article  CAS  Google Scholar 

  • Liu HL (2000) Genetics and breeding in rapeseed. Chinese Agricultural University Press, Beijing, pp 228–253

    Google Scholar 

  • Liu R, Qian W, Meng J (2002) Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris). Theor Appl Genet 105:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Liu RH, Zhao JW, Xiao Y, Meng JL (2005) Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping. Sci China C Life Sci 48(5):460–470

    Article  PubMed  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed  CAS  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn TC (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • Mao CZ, Yi K, Yang L, Zheng BS, Wu YR, Liu FY, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  PubMed  CAS  Google Scholar 

  • Martins W, de Sousa D, Proite K, Guimaraes P, Moretzsohn M, Bertioli D (2006) New softwares for automated microsatellite marker development. Nucleic Acids Res 34:e31

    Article  PubMed  Google Scholar 

  • McVetty PBE, Scarth R, Fernando WGD, Li G, Sun Z, Taylor D, Tu J, Zelmer CD (2007) Brassica seed quality breeding at the university of Manitoba. Proceedings of the 12th international rapeseed congress I: genetics and breeding, Wuhan, China, pp 2–4

  • Meyer RC, Törjék O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Olsson G (1960) Species crosses within the genus Brassica II. Artificial synthesis of Brassica napus L. Hereditas 46:351–386

    Article  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Oper Bot 55:1–57

    Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Heterosis in seed yield potential observed in a new type of Brassica napus introgressed with Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Everett C, Weihmann T, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  PubMed  CAS  Google Scholar 

  • Quiros CF (1999) Genome structure and mapping. In: Gómez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 217–246

    Chapter  Google Scholar 

  • SAS Institute, 1999: SAS OnlineDoc (R), version 8.0, Cary, NC, USA

  • Schranz ME, Osborn TC (2000) Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered 91:242–246

    Article  PubMed  CAS  Google Scholar 

  • Song KM, Tang KL, Osborn TC (1993) Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor Appl Genet 89:885–894

    Google Scholar 

  • Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its applications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: joinmap. Plant J 5:739–744

    Article  Google Scholar 

  • Sun VG (1943) Heterosis between Brassica species (in Chinese). Zhong Guo Nong Xue Hui Bao 175:35–38

    Google Scholar 

  • Sun QX, Wu LM, Ni ZF, Meng FR, Wang ZK, Lin Z (2004) Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci 166:651–657

    Article  CAS  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Tian ZY, Dai JR (2004) Study on heterosis and differential gene expression of functional leaf in Maize during grain filling by cDNA-AFLP. Chinese Sci Bull 47:1412–1416

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer, Version2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Xiong LZ, Yang GP, Xu CG, Zhang Q, Saghai Maroof MA (1998) Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed 4:129–136

    Article  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research and Development Program (2006CB101600) and the Doctoral Foundation of Education Department in China (20020504009). The authors thank Dr. Wallace Cowling, University of Western Australia, for his critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Meng.

Additional information

Communicated by H. C. Becker.

Xin Chen and Maoteng Li contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials (XLS 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Li, M., Shi, J. et al. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus . Theor Appl Genet 117, 1031–1040 (2008). https://doi.org/10.1007/s00122-008-0842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0842-z

Keywords

Navigation