Skip to main content

Advertisement

Log in

Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The timing of transition from vegetative growth to flowering is important in nature as well as in agriculture. One of several pathways influencing this transition in plants is the gibberellin (GA) pathway. In maize (Zea mays L.), the Dwarf8 (D8) gene has been identified as an orthologue of the gibberellic acid-insensitive (GAI) gene, a negative regulator of GA response in Arabidopsis. Nine intragenic polymorphisms in D8 have been linked with variation in flowering time of maize. We tested the general applicability of these polymorphisms as functional markers in an independent set of inbred lines. Single nucleotide primer extension (SNuPe) and gel-based indel markers were developed, and a set of 71 elite European inbred lines were phenotyped for flowering time and plant height across four environments. To control for population structure, we genotyped the plant material with 55 simple sequence repeat markers evenly distributed across the genome. When population structure was ignored, six of the nine D8 polymorphisms were significantly associated with flowering time and none with plant height. However, when population structure was taken into consideration, an association with flowering time was only detected in a single environment, whereas an association across environments was identified between a 2-bp indel in the promoter region and plant height. As the number of lines with different haplotypes within subpopulations was a limiting factor in the analysis, D8 alleles would need to be compared in isogenic backgrounds for a reliable estimation of allelic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic associations. Lancet 361:598–604

    Article  PubMed  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Fehr WR (1987) Principles of cultivar development: theory and technique, 1st edn. Macmillan, New York

    Google Scholar 

  • Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Google Scholar 

  • Goodman MM, Stuber CW (1983) Races of maize. VI. Isozyme variation among races of maize in Bolivia. Maydica 28:169–187

    Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graphic Statist 5:299–314

    Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872

    CAS  PubMed  Google Scholar 

  • Knapp SJ, Bridges WC (1987) Confidence interval estimators for heritability for several mating and experiment designs. Theor Appl Genet 73:759–763

    Google Scholar 

  • Koch CA, Anderson D, Moran MF, Ellis CE, Pawson T (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signalling proteins. Science 252:668–674

    CAS  PubMed  Google Scholar 

  • Le Corre V, Roux F, Reboud X (2002) DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol 19:1261–1271

    CAS  PubMed  Google Scholar 

  • Lübberstedt T, Melchinger AE, Fähr S, Klein D, Dally A, Westhoff P (1998) QTL mapping in testcrosses of flint lines of maize. III. Comparison across populations for forage traits. Crop Sci 38:1278–1289

    Google Scholar 

  • Maurer H-P, Melchinger AE, Frisch M (2004) plabsoft: software for simulation and data analysis in plant breeding. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) 17th EUCARPIA general congress 2004. BOKU-University of Natural Resources and Applied Life Sciences, pp 359–362

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14[Suppl]:S111–S130

    Google Scholar 

  • Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Harberd NP (1993) Derivative alleles of the Arabidopsis Gibberellin-Insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5:351–360

    Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000a) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000b) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26:363–373

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    CAS  PubMed  Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the Gibberellin signal transduction pathway. Plant Cell 10:155–170

    Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Utz HF (2003) platstat—a computer program for statistical analysis of plant breeding experiments, version 3A. University of Hohenheim, Stuttgart

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations: variability within and among natural populations, 1st edn. University of Chicago Press, Chicago, pp 91–91

    Google Scholar 

Download references

Acknowledgements

We thank the Danish Ministry of Food, Agriculture and Fisheries for Financial support. We also thank E.S. Buckler IV and colleagues for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lübberstedt.

Additional information

Communicated by H.C. Becker

Appendices

Appendix 1

 The 71 inbred lines included in the analysis with recorded phenotypic dataa at the four locationsb. DMF, DFF and PHT were recorded in EWE and HOH; DMF and DFF were recorded in SÜN, while DFF was recorded in POC

 

Line name

DMF, EWE

DFF, EWE

PHT, EWE

DMF, HOH

DFF, HOH

PHT, HOH

DMF, SÜN

DFF, SÜN

DFF, POC

Flint

F005

71.6

71.9

174.9

74.4

78

187.6

72.9

77.5

74

F012

65

63.9

127.9

73.1

73

178.4

71

71.5

74

F013

63.9

63

132.8

72.4

73

182.4

70

71

73

F023

74.4

75.4

134.3

77.6

81.5

199

73.1

78.5

76.5

F030

71.7

72.1

129.6

75.9

80

181.2

74

76

74

F034

71.7

71.5

130.1

74.1

77.5

178.3

73.1

77.5

76

F037

69.3

68.9

148.7

73.1

74

200.2

72

73.5

74.5

F039

74.5

76.9

127.8

74.5

81.5

197.3

74

80

76.5

F040

64.1

63.8

119

72

71.5

165

71

71.5

73

F043

71.9

71.9

125.8

74

74.5

169.7

73.7

75

74.5

F045

66.7

66.5

131.3

73

75

179.2

74.5

76

75.5

F047

70.4

72.9

153.8

74.5

75

177.4

73

75

73

F048

71.6

71.9

142

75

76.5

189.6

72.6

75.5

73

F052

67.6

68.6

141.3

74.3

77

184.1

74

76.5

76.5

F054

69.9

69.3

146.7

74.8

75

190.6

72

73

73.5

Flint/Lancaster

L005

78.3

78.9

127.5

77

84.5

160.2

81.5

82

82

L007

79.9

80.8

163.3

86.5

89.5

192.2

83

82.5

85.5

L012

78.3

81.3

191.8

82.3

87

196

80

84

87

L016

73.1

74.6

145.1

78

81

184.6

77.5

80

77.5

L017

71.8

71.7

132

75

78.5

171

76.4

76.5

77

L019

73.6

74.1

145.9

78.4

80.5

180.9

79

79

76

L023

73.6

74.5

161.7

79

80.5

201.9

77.7

77.9

75

L024

73.9

74.7

150.5

78.2

80

182.9

75.5

78

77

L025

72.4

72.8

166.9

78.5

80

187.6

77

77

76.5

L032

75.1

74.9

148.7

80

82.5

181.3

77.5

79.5

77

L035

71

70.2

144.8

76

79

184.8

75

76

76.5

L037

73.6

73.1

151.4

77

80

177.4

75.9

79

77

L041

67

67.1

137.2

74.5

79

175.8

72.9

75

74.5

L043

73.6

74

145

78

80.5

179.2

77.5

79

75

L045

73.7

76.7

159.6

81

84.5

196.1

78

79.5

80.5

L046

69.4

69.4

138

75

79

183.7

73.5

77

73.5

L047

66.8

65.4

146.1

73.9

75

172.4

71.5

73

74.5

L050

74.3

74

168.4

82.4

83

180.1

79.9

79.5

77

Iodent and Iodent/Stiff stalk

P001

79.3

79.8

158

83.4

85.5

185.1

80.9

85

86.5

P006

73.9

75.3

157

79.4

79.5

193.6

75

78.5

78.5

P024

78.8

79.9

167.3

82.1

85

187

79.5

82

80.5

P027

77.9

78.7

154.5

82.2

82.5

188.3

79.6

80.5

78

P033

77.1

76.8

149.3

80.5

82

163.9

79

79.5

78

P034

76.7

76.7

163.3

78.5

80

215.5

77

80.5

77.5

P036

74.7

72.9

158

79

78.5

192

78.5

76.5

76

P038

73.9

75.5

121.6

80.1

83

164.6

75.1

79

77

P040

77.8

78.4

148.7

82.1

86.5

182.7

78.9

80.5

80.5

P042

77.3

76.7

160.6

80.9

81

193.7

80.5

80

76.5

P045

70.7

70.2

138.4

77.4

79

179

73

76

75.5

P046

69.4

68.6

139

75.5

78

173.7

73

77

75

P047

73.5

72.7

140.5

78.6

78.5

177.3

74.9

75.5

76.5

P048

75.1

75.3

143.1

80.5

81.5

168.2

76.5

78

81.5

P053

75.3

77.5

144.4

80.2

83.5

166.4

76.5

80

80.5

P060

77.4

77.3

132

82.5

86

187.3

79

81.5

84

P063

78.2

80.9

149

83

86.5

183.7

81.4

83

82

P064

79.7

80.7

160.4

83.5

86.5

190.8

79.3

83.9

86

P065

81.1

81

167.9

84.7

85

204.5

80.9

82.5

86

P066

74.7

75.7

144.2

80

81

189.3

79

79.5

77.5

Stiff stalk

S002

74.6

74.8

142.9

81

83

163.7

77

78.5

76.5

S015

80

80.3

148.4

84

86

184.8

81.5

82.5

83.5

S016

75.1

76.3

132.5

82.5

83.5

169.6

80

81

82

S018

82.8

84

155.1

89.5

90

187.2

86

86.5

86.5

S020

85

85.8

168.2

90.5

90.5

187.9

86

86.5

87.5

S028

76.5

76.5

161.1

82.5

84

180.7

79.9

81

80

S033

79.7

78.9

160.3

82.9

86.5

183.1

81.5

84.5

82.5

S035

73.9

74.3

136.5

79

81

169.9

77

80

77

S036

73.3

75.3

144.3

80.5

83.5

166.6

78.5

80

76.5

S040

73.4

71.8

144.4

77.5

78.5

185.9

74.5

74

73

S044

79.4

79.1

197.4

82.9

83.5

206

81.1

81.5

82

S046

75

74.6

138

81

81.5

161.4

79.4

80

78.5

S049

76

75.1

149.6

81.5

81.5

175

79.9

80

80.8

S050

78.3

78.9

166.6

81.5

83.5

180.2

75.5

80.5

78

S058

75.1

74.7

113.3

80

80.5

151.8

76.5

78

74.5

S065

72.5

72.7

132.2

77

78.5

163.8

77.1

77.5

77

S066

73

73.2

155.4

75.4

79

163.7

73

77

76

S067

73.7

73.3

127.1

79

80

162.5

79

79.5

76.5

  1. aDMF, Days to male flowering; DFF, days to female flowering; PHT, plant height
  2. bEWE, Eckartsweier; HOH, Hohenheim; SÜN, Sünching; POC, Pocking

Appendix 2

The SSR analysis was performed with 55 publicly available SSR markers providing an even coverage of the maize genome 

Chromosome

Bin

Marker name

1

1

phi427913

3

phi109275

4

umc1169

6

umc1122

9

phi011

11

phi064

2

1

phi96100

3

umc1555

4

phi083

8

phi127

10

phi101049

3

1

phi104127

2

phi374118

5

phi053

6

phi102228

7

umc1489

9

umc1641

4

1

phi072

1

phi213984

4

phi308090

5

phi079

8

phi093

10

umc1180

5

2

phi396160

4

phi331888

5

phi333597

7

phi128

9

umc1153

6

0

umc1143

1

phi423796

3

umc1887

4

phi031

7

phi123

8

phi089

7

0

umc1545

3

phi114

4

phi328175

5

phi069

6

phi116

8

0

phi420701

2

umc1304

3

phi121

3

phi100175

8

phi015

9

phi233376

9

0

umc1279

3

phi065

4

phi032

5

phi108411

7

umc1675

10

0

phi041

1

umc1152

3

phi050

4

phi084

6

umc1061

Appendix 3

Correspondence between D8 haplotypes (Fig. 2) and the 71 maize lines included in the analysis 

Haplotype

Lines

1

F012, F013, F034, F045, F048, L016, L035

2

P036, P060, S002, S015, S028, S033, S035, S036, S040, S050

3

P034

4

F040, L024

5

L037

6

L012, L045, L047, L050

7

F005, F023, F030, F037, F039, F043, F047, F052, F054, L005, L007, L017, L019, L023, L025, L032, L041, L043, L046, P001, P006, P024, P027, P033, P038, P040, P042, P045, P046, P047, P048, P053, P064, P065, P066, S016, S018, S020, S044, S046, S058, S065

8

P063, S049, S066, S067

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, J.R., Schrag, T., Melchinger, A.E. et al. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111, 206–217 (2005). https://doi.org/10.1007/s00122-005-1996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-1996-6

Keywords

Navigation