Skip to main content
Log in

QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genetic control of the different attributes involved in peach quality has been investigated in an advanced backcross population derived from a cross between Prunus davidiana clone P1908, a wild parent with poor agronomic performance, and a commercial variety, Summergrand. A total of 24 physical and biochemical traits were investigated. Quantitative trait loci (QTLs) were detected for all the traits studied. We identified alleles from P. davidiana with agronomically favorable effects regarding fruit and stone sizes, sugar and acid concentrations and red flesh coloration, in clear contrast to its phenotype. We identified three main regions of the genome where alleles from P. davidiana had negative effects on multiple traits. In other regions, co-locations of QTLs with opposite effects on quality traits were also detected. We discuss the nature of these co-locations in the light of the probable physiological mechanisms involved. Strategies to cope with negative correlations between favorable traits and co-locations of P. davidiana alleles with negative effects on quality traits and positive effects regarding resistance to powdery mildew are discussed from a breeding point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allard RW (1956) Formulas and tables to facilitate the calculation or recombination values in heredity. Hilgardia 24:235–278

    Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    CAS  PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis in tomato. I Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Chapman GW, Horvat RJ (1990) Changes in non volatile acids, sugars, pectin, and sugar composition of pectin during peach cv. Monroe maturation. J Agric Food Chem 38:383–387

    Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT and AG/GT microsatellite repeats in peach (Prunus persica L. Batsch): isolation characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach Prunus persica L. Batsch. Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach (Prunus persica L. Batsch). Theor Appl Genet 105:145–159

    Article  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Génard M, Lescourret F, Gomez L, Habib R (2003) Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit Prunus persica. Tree Physiol 23:373–385

    PubMed  Google Scholar 

  • Gomez L, Rubio E, Augé M (2002) A new procedure for extraction and measurement of soluble sugars in ligneous plants. J Sci Food Agric 82:360–369

    Article  CAS  Google Scholar 

  • Keener ME, de Michele DW, Sharpe PJ (1979) Sink metabolism. A conceptual framework for analysis. Ann Bot 44:659–669

    CAS  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112:1321–1330

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Liverani A, Cangini A (1991) Ethylene evolution and changes in carbohydrates and organic acid during maturation of two white and two yellow fleshed peach cultivars. Adv Hortic Sci 5:59–63

    Google Scholar 

  • Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207

    CAS  Google Scholar 

  • Moing A, Carbonne F, Rashad MH, Gaudillère JP (1992) Carbon fluxes in mature peach leaves. Plant Physiol 100:1878–1884

    CAS  Google Scholar 

  • Moing A, Svanella L, Rolin D, Gaudillère M, Gaudillère JP, Monet R (1998) Compositional changes during the fruit development of two peach cultivars differing in juice acidity. J Am Soc Hortic Sci 123:770–775

    CAS  Google Scholar 

  • Moing A, Poëssel JL, Svanella-Dumas L, Loonis M, Kervella J (2003) Biochemical basis of low fruit quality of Prunus davidiana, a pest and disease resistance donor for peach breeding. J Am Soc Hortic Sci 128:55–62

    CAS  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Gauch HJ, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Pangborn RM (1963) Relative taste intensities of selected sugars and organic acids. J Food Sci 28:726–733

    Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Smykov VK, Ovcharenko GV, Perfilyeva ZN, Shoeferistov EP (1982) Estimation of the peach hybrid resources by its mildew resistance against the infection background. Byull Gos Nikitsk Bot Sada 88:74–80

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterisation of microsatellite markers in peach Prunus persica L. Batsch. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  PubMed  Google Scholar 

  • Swanston JS (1987) The consequences, for malting quality, of Hordeum laevigatum as a source of mildew resistance in barley breeding. Ann Appl Biol 110:351–355

    Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  CAS  PubMed  Google Scholar 

  • Thomas WTB, Baird E, Fuller JD, Lawrence P, Young GR, Russell J, Ramsay L, Waugh R, Powell W (1998) Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistance. Mol Breed 4:381–393

    CAS  Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297

    CAS  Google Scholar 

  • Wang T, Gonzales AR, Gbur EE, Aselage JM (1993) Organic acid changes during ripening of processing peaches. J Food Sci 58:631–632

    CAS  Google Scholar 

  • Wu BH, Génard M, Lescourret F, Gomez L, Li SH (2002) Influence of assimilate and water supply on seasonal variation of acids in peach cv. Suncrest. J Sci Food Agric 82:1829–1836

    Article  CAS  Google Scholar 

  • Wu BH, Quilot B, Kervella J, Génard M, Li S (2003) Analysis of genotypic variation in sugar and acid contents in peaches and nectarines through the principal component analysis. Euphytica 132:375–384

    Article  CAS  Google Scholar 

  • Yamaki S, Asakura T (1988) Energy coupled transport of sorbitol and other sugars into the protoplast isolated from apple fruit flesh. Plant Cell Physiol 29:961–967

    CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Rubio and L. Gomez for sugar analyses. We thank V. Hawken for improving the English. This research was funded in part by grants from the Ministère de la Recherche, from the Région Provence-Alpes-Côte d’Azur (projects 2002/06290 and 2003/10048) and from the Institut National de la Recherche Agronomique, France (A.I.P. PFI and A.I.P. REA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Quilot.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quilot, B., Wu, B.H., Kervella, J. et al. QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana . Theor Appl Genet 109, 884–897 (2004). https://doi.org/10.1007/s00122-004-1703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1703-z

Keywords

Navigation