Skip to main content
Log in

Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 × Lycopersicon pennellii accession LA1657. A total of 175 BC2 plants were genotyped with 150 molecular markers and BC2F1 plots were grown and phenotyped for 25 traits in three locations in Israel and California, U.S.A. A total of 84 different QTLs were identified, 45% of which have been possibly identified in other wild-species-derived populations of tomato. Moreover, three fruit-weight/size and shape QTLs (fsz2b.1, fw3.1/fsz3.1 and fs8.1) appear to have putative orthologs in the related solanaceous species, pepper and eggplant. For the 23 traits for which allelic effects could be deemed as favorable or unfavorable, 26% of the identified loci had L. pennellii alleles that enhanced the performance of the elite parent. Alleles that could be targeted for further introgression into cultivated tomato were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ben Chaim A, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    CAS  PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from L. hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Majority of random cDNA clones correspond to single loci in the tomato genome. Mol Gen Genet 203:8–14

    CAS  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    CAS  Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed  Google Scholar 

  • Doganlar S, Frary A, Ku H-K, Tanksley SD (2002a) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002b) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726

    CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression-line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. Genetics 141:1147–1162

    CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E, Cong B, Lui J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait-locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley SD (2003a) Fine mapping of quantitative trait loci for improved fruit characterisitcs from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Doganlar S, Daunay MC, Tanksley SD (2003b) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107:359–370

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Nelson JC, Tanksley SD (1997a) Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into L. esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902

    CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997b) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002) Quantitative trait loci (QTLs) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum × L. cheesmanii cross. Theor Appl Genet 90:925–932

    Google Scholar 

  • Grandillo S, Tanksley SD (1996) Analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  Google Scholar 

  • Grandillo S, Ku H-M, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    CAS  Google Scholar 

  • Haanstra JP, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Ho J, McCouch SM, Smith M (2003) Improvement of hybrid yield by an advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    Article  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Ibarbia EA, Lambeth VN (1971) Tomato fruit size and quality interrelationships. J Am Soc Hort Sci 96:199–201

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed  Google Scholar 

  • Liu J, van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  CAS  PubMed  Google Scholar 

  • Moncada P, Martinez CP, Borrero J, Chatel M, Guach H, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × O. rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome-1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293

    Article  CAS  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:229–235

    Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinovitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127:181–197

    CAS  PubMed  Google Scholar 

  • Pelham J (1968) Disturbed segregation of genes on chromosome 9: gamete promoter, Gp, a new gene. Tomato Genet Coop 18:27–29

    Google Scholar 

  • Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    CAS  PubMed  Google Scholar 

  • Rick CM, Tanksley SD (1981) Genetic variation in Solanum pennellii: comparisons with two other sympatric tomato species. Plant Syst Evol 139:11–45

    Google Scholar 

  • Stevens MA (1986) Inheritance of tomato fruit quality components. Plant Breed Rev 4:273–311

    Google Scholar 

  • Stevens MA, Rudich J (1978) Genetic potential for overcoming physiological limitations on adaptability, yield and quality in the tomato. Hort Science 13:673–678

    CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn S, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

Download references

Acknowledgements

We thank Charles Fleck and T. Casey Garvey at Hunts, and Steve Schroeder at Sunseeds, for assistance with the field tests in California. This work was supported in part by grants from the National Research Initiative Cooperative Grants Program (No. 96-35300-3646) and the Binational Agricultural Research and Development Fund (No. US 2427-94).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Tanksley.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frary, A., Fulton, T.M., Zamir, D. et al. Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108, 485–496 (2004). https://doi.org/10.1007/s00122-003-1422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1422-x

Keywords

Navigation