Skip to main content
Log in

Environmental risk factors for autism spectrum disorders

Umweltrisikofaktoren für Autismusspektrumstörungen

  • E-only: Review articles
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Abstract

Background

Autism spectrum disorders (ASD) are syndromes that are predominantly defined by behavioral features such as impaired social interactions, restricted verbal and nonverbal communication, and repetitive or stereotyped behavior. In the past few decades, the reported prevalence of ASD has increased dramatically. This growth can be partially explained by an increased level of awareness of the problem among professionals and better diagnostic methods. Nevertheless, underpinning causes of ASD have not yet been detailed and explained. It is suggested that rather than having a single causative factor, ASD pathogenesis is influenced by environmental or genetic factors, or a combination of both. The aims of this review are to describe the environmental risk factors associated with ASD so as to provide a reference basis for current and future clinical and experimental work.

Materials and methods

On the basis of a PubMed search, we review the existing knowledge on environmental factors associated with ASD.

Results

A series of environmental factors have been repeatedly reported as risk factors for ASD in existing studies.

Conclusion

Air pollution, organic toxicants, seasonal factors, psychological stress, migration, birth order, and nutrition may have a close relationship with the incidence of ASD.

Zusammenfassung

Hintergrund

Autismusspektrumstörungen (ASS) sind überwiegend durch Verhaltensmerkmale definierte Syndrome, wie eingeschränkte soziale Interaktion, begrenze verbale und nonverbale Kommunikation und repetitives oder stereotypes Verhalten. In den letzten Jahrzehnten stieg die gemeldete Prävalenz von ASS drastisch an. Dieser Anstieg ist z. T durch ein vermehrtes Bewusstsein für diese Erkrankungen bei den damit befassten Berufsgruppen und durch bessere diagnostische Verfahren zu erklären. Trotzdem wurden die zugrunde liegenden Ursachen von ASS bisher nicht detailliert aufgeführt und erklärt. Es gibt Hinweise darauf, dass anstelle eines einzelnen ursächlichen Faktors die Pathogenese von ASS eher von Umwelt- oder genetischen Faktoren oder einer Kombination aus beiden beeinflusst wird. Ziel der vorliegenden Übersichtarbeit ist die Beschreibung der Umweltrisikofaktoren im Zusammenhang mit ASS, um eine Referenzgrundlage für laufende und zukünftige klinische und experimentelle Arbeiten zu schaffen.

Material und Methoden

Auf der Grundlage eine PubMed-Suche wird ein Überblick über das vorhandene Wissen zu Umweltfaktoren gegeben, die mit ASS in Zusammenhang stehen.

Ergebnisse

Eine Reihe von Umweltfaktoren sind wiederholt als Risikofaktoren von ASS in bestehenden Studien genannt worden.

Schlussfolgerung

Luftverschmutzung, organische Giftstoffe, saisonale Faktoren, psychischer Stress, Migration, Geburtenfolge und Ernährung können in engem Zusammenhang mit der Inzidenz von ASS stehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Jensen CM, Steinhausen HC, Lauritsen MB (2014) Time trends over 16 years in incidence-rates of autism spectrum disorders across the lifespan based on nationwide Danish register data. J Autism Dev Disord 44:1808–1818

    Article  PubMed  Google Scholar 

  2. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910

    Article  PubMed  Google Scholar 

  3. Nevison CD (2014) A comparison of temporal trends in United States autism prevalence to trends in suspected environmental factors. Environ Health 13:73

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23:183–187

    Article  PubMed  Google Scholar 

  5. Schieve LA, Clayton HB, Durkin MS, Wingate MS, Drews-Botsch C (2015) Comparison of perinatal risk factors associated with Autism Spectrum Disorder (ASD), Intellectual Disability (ID), and co-occurring ASD and ID. J Autism Dev Disord 45:2361–2372

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hallmayer J (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68:1095

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lyall K, Schmidt RJ, Hertz-Picciotto I (2014) Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol 43:443–464

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jung CR, Lin YT, Hwang BF (2013) Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan. PLoS ONE 8:e75510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Volk HE, Hertz-Picciotto I, Delwiche L, Lurmann F, McConnell R (2011) Residential proximity to freeways and autism in the CHARGE study. Environ Health Perspect 119:873–877

    Article  PubMed  Google Scholar 

  10. Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, Rauh V (2009) Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 124:e195–e202

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurol Sci 262:122–130

    Article  CAS  PubMed  Google Scholar 

  13. Tamagawa E, van Eeden SF (2006) Impaired lung function and risk for stroke: role of the systemic inflammation response? Chest 130:1631–1633

    Article  PubMed  Google Scholar 

  14. Malik M, Sheikh AM, Wen G, Spivack W, Brown WT, Li X (2011) Expression of inflammatory cytokines, Bcl2 and cathepsin D are altered in lymphoblasts of autistic subjects. Immunobiology 216:80–85

    Article  CAS  PubMed  Google Scholar 

  15. Hegazy HG, Ali EH, Elgoly AH (2015) Interplay between pro-inflammatory cytokines and brain oxidative stress biomarkers: Evidence of parallels between butyl paraben intoxication and the valproic acid brain physiopathology in autism rat model. Cytokine 71:173–180

    Article  CAS  PubMed  Google Scholar 

  16. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, Littman DR, Huh JR (2016) The maternal interleukin-17 a pathway in mice promotes autism-like phenotypes in offspring. Science 351:933–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  18. Goines PE, Ashwood P (2013) Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicol Teratol 36:67–81

    Article  CAS  PubMed  Google Scholar 

  19. LaSalle JM (2014) A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics 6:862–869

    Article  Google Scholar 

  20. Rossignol DA, Genuis SJ, Frye RE (2014) Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiat 4:e360

    Article  CAS  Google Scholar 

  21. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  CAS  PubMed  Google Scholar 

  22. Blanchard KS, Palmer RF, Stein Z (2011) The value of ecologic studies: mercury concentration in ambient air and the risk of autism. Rev Environ Health 26:111–118

    Article  PubMed  Google Scholar 

  23. Price CS, Thompson WW, Goodson B, Weintraub ES, Croen LA, Hinrichsen VL, Marcy M, Robertson A, Eriksen E, Lewis E, Bernal P, Shay D, Davis RL, DeStefano F (2010) Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism. Pediatrics 126:656–664

    Article  PubMed  Google Scholar 

  24. Pino-Lopez M, Romero-Ayuso DM (2013) Parental occupational exposures and autism spectrum disorder in children. Rev Esp Salud Publica 87:73–85

    Article  PubMed  Google Scholar 

  25. Kimura-Kuroda J, Nagata I, Kuroda Y (2007) Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere 67:S412–S420

    Article  CAS  PubMed  Google Scholar 

  26. Korrick SA, Sagiv SK (2008) Polychlorinated biphenyls, organochlorine pesticides and neurodevelopment. Curr Opin Pediatr 20:198–204

    Article  PubMed  Google Scholar 

  27. Eskenazi B, Marks AR, Bradman A, Bradman A, Harley K, Barr DB, Johnson C, Morga N, Jewell NP (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115:792–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:e1845–e1859

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, Liu J, Barr DB, Slotkin TA, Peterson BS (2012) Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci USA 109:7871–7876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts EM, English PB (2013) Bayesian modeling of time-dependent vulnerability to environmental hazards: an example using autism and pesticide data. Stat Med 32:2308–2319

    Article  PubMed  Google Scholar 

  31. Sharpe RM (2008) “Additional” effects of phthalate mixtures on fetal testosterone production. Toxicol Sci 105:1–4

    Article  CAS  PubMed  Google Scholar 

  32. Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, Silva MJ, Brenner BL, Wolff MS (2012) Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environ Res 112:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, Calafat AM, Wolff MS (2011) Endocrine disruptors and childhood social impairment. Neurotoxicology 32:261–267

    Article  CAS  PubMed  Google Scholar 

  34. Larsson M, Weiss B, Janson S, Sundell J, Bornehag CG (2009) Associations between indoor environmental factors and parental-reported autistic spectrum disorders in children 6–8 years of age. Neurotoxicology 30:822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zerbo O, Iosif A, Delwiche L, Walker C, Hertz-Picciotto I (2011) Month of conception and risk of autism. Epidemiology 22:469–475

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barak Y, Ring A, Sulkes J, Sulkes J, Gabbay U, Elizur A (1995) Season of birth and autistic disorder in Israel. Am J Psychiatry 152:798–800

    Article  CAS  PubMed  Google Scholar 

  37. Atladóttir HO, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40:1423–1430

    Article  PubMed  Google Scholar 

  38. Atladottir HO, Thorsen P, Ostergaard L, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40:1423–1430

    Article  PubMed  Google Scholar 

  39. Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 14:281–292

    PubMed  PubMed Central  Google Scholar 

  40. Gadow KD, DeVincent CJ (2012) Comparison of children with autism spectrum disorder with and without schizophrenia spectrum traits: gender, season of birth, and mental health risk factors. J Autism Dev Disord 42:2285–2296

    Article  PubMed  Google Scholar 

  41. Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415

    Article  PubMed  Google Scholar 

  42. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, Nagaraja HN, Cooley WC, Gaelic SE, Bauman ML (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35:471–478

    Article  CAS  PubMed  Google Scholar 

  43. Kinney DK, Munir KM, Crowley DJ, Miller AM (2008) Prenatal stress and risk for autism. Neurosci Biobehav Rev 32:1519–1532

    Article  PubMed  PubMed Central  Google Scholar 

  44. Makrigiannakis A, Semmler M, Briese V, Eckerle H, Minas V, Mylonas I, Friese K, Jeschke U (2007) Maternal serum corticotropin-releasing hormone and ACTH levels as predictive markers of premature labor. Int J Gynaecol Obstet 97:115–119

    Article  CAS  PubMed  Google Scholar 

  45. Esposito P (2002) Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 303:1061–1066

    Article  CAS  PubMed  Google Scholar 

  46. Farley MA, McMahon WM, Fombonne E, Jenson WR, Miller J, Gardner M, Block H, Pingree CB, Ritvo ER, Ritvo RA, Coon H (2009) Twenty-year outcome for individuals with autism and average or near-average cognitive abilities. Autism Res 2:109–118

    Article  PubMed  Google Scholar 

  47. Gardener H, Spiegelman D, Buka SL (2009) Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry 195:7–14

    Article  PubMed  PubMed Central  Google Scholar 

  48. Magnusson C, Rai D, Goodman A, Lundberg M, Idring S, Svensson A, Koupil I, Serlachius E, Dalman C (2012) Migration and autism spectrum disorder: population-based study. Br J Psychiatry 201:109–115

    Article  PubMed  Google Scholar 

  49. Lehti V, Hinkka-Yli-Salomaki S, Cheslack-Postava K, Gissler M, Brown AS, Sourander A (2013) The risk of childhood autism among second-generation migrants in Finland: a case-control study. BMC Pediatr 13:171

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martin LA, Horriat NL (2012) The effects of birth order and birth interval on the phenotypic expression of autism spectrum disorder. PLoS ONE 7:e51049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zwaigenbaum L, Szatmari P, Jones MB, Bryson SE, MacLean JE, Mahoney WJ, Bartolucci G, Tuff L (2002) Pregnancy and birth complications in autism and liability to the broader autism phenotype. J Am Acad Child Adolesc Psychiatry 41:572–579

    Article  PubMed  Google Scholar 

  52. Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, Law K, Law P, Qiu S, Lord C, Sebat J, Ye K, Wigler M (2007) A unified genetic theory for sporadic and inherited autism. Proc Natl Acad Sci USA 104:12831–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fountain C, King MD, Bearman PS (2011) Age of diagnosis for autism: individual and community factors across 10 birth cohorts. J Epidemiol Community Health 65:503–510

    Article  PubMed  Google Scholar 

  54. Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, Cheon KA, Kim SJ, Kim YK, Lee H, Song DH, Grinker RR (2011) Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 168:904–912

    Article  PubMed  Google Scholar 

  55. Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, Joseph RM, Moilanen I (2011) Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry 50:583–592

    Article  PubMed  Google Scholar 

  56. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R (2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 9:e1001081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wheelwright S, Baron-Cohen S, Goldenfeld N, Delaney J, Fine D, Smith R, Weil L, Wakabayashi A (2006) Predicting Autism Spectrum Quotient (AQ) from the Systemizing Quotient-Revised (SQ-R) and Empathy Quotient (EQ). Brain Res 1079:47–56

    Article  CAS  PubMed  Google Scholar 

  58. Dworzynski K, Ronald A, Bolton P, Happé F (2012) How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J Am Acad Child Adolesc Psychiatry 51:788–797

    Article  PubMed  Google Scholar 

  59. Dionne G, Boivin M, Seguin JR, Pérusse D, Tremblay RE (2008) Gestational diabetes hinders language development in offspring. Pediatrics 122:e1073–e1079

    Article  PubMed  Google Scholar 

  60. Dodds L, Fell DB, Shea S, Armson BA, Allen AC, Bryson S (2011) The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord 41:891–902

    Article  PubMed  Google Scholar 

  61. Kawicka A, Regulska-Ilow B (2013) How nutritional status, diet and dietary supplements can affect autism. A review. Rocz Panstw Zakl Hig 64:1–12

    CAS  PubMed  Google Scholar 

  62. De Felice C, Cortelazzo A, Signorini C, Guerranti R, Leoncini S, Pecorelli A, Durand T, Galano JM, Oger C, Zollo G, Montomoli B, Landi C, Bini L, Valacchi G, Ciccoli L, Hayek J (2013) Effects of ω‑3 polyunsaturated fatty acids on plasma proteome in Rett syndrome. Mediat Inflamm 2013:1–9

    Article  Google Scholar 

  63. Johnson SM, Hollander E (2003) Evidence that eicosapentaenoic acid is effective in treating autism. J Clin Psychiatry 64:848–849

    Article  PubMed  Google Scholar 

  64. Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N (2013) Epigenetic findings in autism: new perspectives for therapy. Int J Environ Res Public Health 10:4261–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Whitehouse AJ, Holt BJ, Serralha M, Holt PG, Kusel MM, Hart PH (2012) Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 129:485–493

    Article  PubMed  Google Scholar 

  66. Roth C, Magnus P, Schjolberg S, Stoltenberg C, Surén P, McKeague IW, Davey SG, Reichborn-Kjennerud T, Susser E (2011) Folic acid supplements in pregnancy and severe language delay in children. JAMA 306:1566–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schaevitz LR, Berger-Sweeney JE (2012) Gene-environment interactions and epigenetic pathways in autism: the importance of one-carbon metabolism. ILAR J 53:322–340

    Article  PubMed  Google Scholar 

  68. Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tassone F, Hertz-Picciotto I (2012) Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr 96:80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Surén P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, Lie KK, Lipkin WI, Magnus P, Reichborn-Kjennerud T, Schjølberg S, Davey Smith G, Øyen AS, Susser E, Stoltenberg C (2013) Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309:570–577

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ramaekers VT, Blau N, Sequeira JM, Ramaekers VT, Blau N, Sequeira JM, Nassogne MC, Quadros EV (2007) Folate receptor autoimmunity and cerebral folate deficiency in low-functioning autism with neurological deficits. Neuropediatrics 38:276–281

    Article  CAS  PubMed  Google Scholar 

  71. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  PubMed  Google Scholar 

  72. Yasuda H, Yasuda Y, Tsutsui T (2013) Estimation of autistic children by metallomics analysis. Sci Rep. doi:10.1038/srep01199

    Google Scholar 

  73. Arnold LE, Bozzolo H, Hollway J, Cook A, DiSilvestro RA, Bozzolo DR, Crowl L, Ramadan Y, Williams C (2005) Serum zinc correlates with parent- and teacher- rated inattention in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 15:628–636

    Article  PubMed  Google Scholar 

  74. DiGirolamo AM, Ramirez-Zea M, Wang M, Flores-Ayala R, Martorell R, Neufeld LM, Ramakrishnan U, Sellen D, Black MM, Stein AD (2010) Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala. Am J Clin Nutr 92:1241–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    Article  CAS  PubMed  Google Scholar 

  76. Mousain-Bosc M, Roche M, Polge A, Pradal-Prat D, Rapin J, Bali JP (2006) Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. II. Pervasive developmental disorder-autism. Magnes Res 19:53–62

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-M. Li.

Ethics declarations

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of Central South University (grant number: 2015zzts290).

Conflict of interest

L. Liu, D. Zhang, J.K. Rodzinka-pasko, and Y.-M. Li state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, D., Rodzinka-pasko, J.K. et al. Environmental risk factors for autism spectrum disorders. Nervenarzt 87 (Suppl 2), 55–61 (2016). https://doi.org/10.1007/s00115-016-0172-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-016-0172-3

Keywords

Schlüsselwörter

Navigation