Skip to main content
Log in

Age-related macular degeneration: activation of innate immunity system via pattern recognition receptors

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision. Histopathological studies have demonstrated that inflammation is the key player in the pathogenesis of AMD. Genetic studies have revealed that complement factor H is a strong risk factor for the development of AMD. However, innate immunity defence involves several other pattern recognition receptors (PRRs) which can trigger inflammatory responses. Retinal pigment epithelial (RPE) cells have the main role in the immune defence in macula. In this study, we examine in detail the endogenous danger signals which can activate different PRRs in RPE cells, such as Toll-like, NOD-like and scavenger receptors along with complement system. We also characterise the signalling pathways triggered by PRRs in evoking inflammatory responses. In addition, we will discuss whether AMD pathology could represent the outcome of chronic activation of the innate immunity defence in human macula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hageman GS, Luthert PJ, Chong NHV, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE–Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  PubMed  CAS  Google Scholar 

  2. Donoso LA, Kim D, Frost A, Callahan A, Hageman G (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51:137–152

    Article  PubMed  Google Scholar 

  3. Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58:353–363

    PubMed  CAS  Google Scholar 

  4. Lotery A, Trump D (2007) Progress in defining the molecular biology of age related macular degeneration. Hum Genet 122:219–236

    Article  PubMed  Google Scholar 

  5. Edwards AO (2008) Genetics of age-related macular degeneration. Adv Exp Med Biol 613:211–219

    Article  PubMed  Google Scholar 

  6. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  7. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  PubMed  CAS  Google Scholar 

  8. Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–622

    Article  PubMed  CAS  Google Scholar 

  9. Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518

    Article  PubMed  CAS  Google Scholar 

  10. Kohl J (2006) Self, non-self, and danger: a complementary view. Adv Exp Med Biol 586:71–94

    Article  PubMed  CAS  Google Scholar 

  11. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, DeVera ME, Liang X, Tor M, Billiard T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  PubMed  CAS  Google Scholar 

  12. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3–10

    Article  PubMed  CAS  Google Scholar 

  13. Higgins GT, Wang JH, Dockery P, Cleary PE, Redmond HP (2003) Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Invest Ophthalmol Vis Sci 44:1775–1782

    Article  PubMed  Google Scholar 

  14. Bergmann M, Schutt F, Holz FG, Kopitz J (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18:562–564

    PubMed  CAS  Google Scholar 

  15. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  PubMed  CAS  Google Scholar 

  16. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9:857–865

    Article  PubMed  CAS  Google Scholar 

  17. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  18. Sivaprasad S, Bailey TA, Chong VNH (2005) Bruch’s membrane and the vascular intima: is there a common basis for age-related changes and disease? Clin Exp Ophthalmol 33:518–523

    Article  Google Scholar 

  19. Gasque P (2004) Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089–1098

    Article  PubMed  CAS  Google Scholar 

  20. Kemper C, Hourcade DE (2008) Properdin: new roles in pattern recognition and target clearance. Mol Immunol 45:4048–4056

    Article  PubMed  CAS  Google Scholar 

  21. Xu W, Berger SP, Trouw LA, de Boer H, Schlagwein N, Mutsaers C, Daha MR, van Kooten C (2008) Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation. J Immunol 180:7613–7621

    PubMed  CAS  Google Scholar 

  22. Swaroop A, Branham KEH, Chen W, Abecasis G (2007) Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum Mol Genet 16:R174–R182

    Article  PubMed  CAS  Google Scholar 

  23. Jozsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29:380–387

    Article  PubMed  CAS  Google Scholar 

  24. Meri S (2007) Loss of self-control in the complement system and innate autoreactivity. Ann N Y Acad Sci 1109:93–105

    Article  PubMed  CAS  Google Scholar 

  25. Mandal MNA, Ayyagari R (2006) Complement factor H: spatial and temporal expression and localization in the eye. Invest Ophthalmol Vis Sci 47:4091–4097

    Article  PubMed  Google Scholar 

  26. Johnson PT, Betts KE, Radeke MJ, Hageman GS, Anderson DH, Johnson LV (2006) Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci USA 103:17456–17461

    Article  PubMed  CAS  Google Scholar 

  27. Chen M, Forrester JV, Xu H (2007) Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp Eye Res 84:635–645

    Article  PubMed  CAS  Google Scholar 

  28. Wu Z, Lauer TW, Sick A, Hackett SF, Campochiaro PA (2007) Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem 282:22414–22425

    Article  PubMed  CAS  Google Scholar 

  29. Garlanda C, Bottazzi B, Bastone A, Mantovani A (2005) Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 23:337–366

    Article  PubMed  CAS  Google Scholar 

  30. Laine M, Jarva H, Seitsonen S, Haapasalo K, Lehtinen MJ, Lindeman N, Anderson DH, Johnson PT, Jarvela I, Jokiranta TS, Hageman GS, Immonen I, Meri S (2007) Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. J Immunol 178:3831–3836

    PubMed  CAS  Google Scholar 

  31. Schaumberg DA, Christen WG, Kozlowski P, Miller DT, Ridker PM, Zee RYL (2006) A prospective assessment of the Y402H variant in complement factor H, genetic variants in C-reactive protein, and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2336–2340

    Article  PubMed  Google Scholar 

  32. Scholl HPN, Issa PC, Walier M, Janzer S, Pollok-Kopp B, Borncke F, Fritsche LG, Chong NV, Fimmers R, Wienker R, Holz FG, Weber BHF, Oppermann M (2008) Systemic complement activation in age-related macular degeneration. PLoS ONE 3:e2593

    Article  PubMed  CAS  Google Scholar 

  33. Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165

    Article  PubMed  CAS  Google Scholar 

  34. Barton GM (2007) Viral recognition by Toll-like receptors. Semin Immunol 19:33–40

    Article  PubMed  CAS  Google Scholar 

  35. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptors (TLR)4 and TLR2. Shock 26:174–179

    Article  PubMed  CAS  Google Scholar 

  36. Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480

    Article  PubMed  CAS  Google Scholar 

  37. Kindzelskii AL, Elner VM, Elner SG, Yang D, Hughes BA, Petty HR (2004) Toll-like receptor 4 (TLR4) of retinal pigment epithelium cells participates in transmembrane signaling in response to photoreceptor outer segments. J Gen Physiol 124:139–149

    Article  PubMed  CAS  Google Scholar 

  38. Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol 153:7–15

    Article  PubMed  CAS  Google Scholar 

  39. Elner SG, Petty HR, Elner VM, Yoshida A, Bian ZM, Yang D, Kindzelskii AL (2005) TLR4 mediates human retinal pigment epithelial endotoxin binding and cytokine expression. Invest Ophthalmol Vis Sci 46:4627–4633

    Article  PubMed  Google Scholar 

  40. Ebihara N, Chen L, Tokura T, Ushio H, Iwatsu M, Murakami A (2007) Distinct functions between Toll-like receptors 3 and 9 in retinal pigment epithelial cells. Ophthalmic Res 39:155–163

    Article  PubMed  CAS  Google Scholar 

  41. Paimela T, Ryhanen T, Mannermaa E, Ojala J, Kalesnykas G, Salminen A, Kaarniranta K (2007) The effect of 17β-estradiol on IL-6 secretion and NF-κB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett 110:139–144

    Article  PubMed  CAS  Google Scholar 

  42. Elner VM, Elner SG, Bian ZM, Kindzelskii AL, Yoshida A, Petty HR (2003) RPE CD14 immunohistochemical, genetic, and functional expression. Exp Eye Res 76:321–331

    Article  PubMed  CAS  Google Scholar 

  43. Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM (2007) Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res 85:462–472

    Article  PubMed  CAS  Google Scholar 

  44. Holtkamp GM, Kijlstra A, Peek R, de Vos AF (2001) Retinal pigment epithelium system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20:29–48

    Article  PubMed  CAS  Google Scholar 

  45. Sugano E, Tomita H, Ishiguro S, Isago H, Tamai M (2006) Nitric oxide-induced accumulation of lipofuscin-like materials is caused by inhibition of cathepsin S. Curr Eye Res 31:607–616

    Article  PubMed  CAS  Google Scholar 

  46. Blander JM (2007) Signalling and phagocytosis in the orchestration of host defence. Cell Microbiol 9:290–299

    Article  PubMed  CAS  Google Scholar 

  47. Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461

    Article  PubMed  CAS  Google Scholar 

  48. Hollyfield JG, Rayborn ME, Tammi R (1997) Hyaluronan localization in tissues of the mouse posterior eye wall: absence in the interphotoreceptor matrix. Exp Eye Res 65:603–608

    Article  PubMed  CAS  Google Scholar 

  49. Newsome DA, Huh W, Green WR (1987) Bruch’s membrane age-related changes vary by region. Curr Eye Res 6:1211–1221

    Article  PubMed  CAS  Google Scholar 

  50. Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroid neovascular membranes. Surv Ophthalmol 44(Suppl 1):S10–S32

    Article  PubMed  Google Scholar 

  51. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJC, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Article  PubMed  CAS  Google Scholar 

  52. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  PubMed  CAS  Google Scholar 

  53. Howes KA, Liu Y, Dunaief JL, Milam A, Frederick JM, Marks A, Baehr W (2004) Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci 45:3713–3720

    Article  PubMed  Google Scholar 

  54. Yamada Y, Ishibashi K, Ishibashi K, Bhutto IA, Tian J, Lutty GA, Handa JT (2006) The expression of advanced glycation endproduct receptors in rpe cells associated with basal deposits in human maculas. Exp Eye Res 82:840–848

    Article  PubMed  CAS  Google Scholar 

  55. Ma W, Lee SE, Guo J, Qu W, Hudson BI, Schmidt AM, Barile GR (2007) RAGE ligand upregulation of VEGF secretion in ARPE-19 cells. Invest Ophthalmol Vis Sci 48:1355–1361

    Article  PubMed  Google Scholar 

  56. Febbraio M, Silverstein RL (2007) CD36: implications in cardiovascular disease. Int J Biochem Cell Biol 39:2012–2030

    Article  PubMed  CAS  Google Scholar 

  57. Hazen SL (2008) Oxidized phospholipids as endogenous pattern recognition ligands in innate immunity. J Biol Chem 283:15527–15531

    Article  PubMed  CAS  Google Scholar 

  58. Ryeom SW, Sparrow JR, Silverstein RL (1996) CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 109:387–395

    PubMed  CAS  Google Scholar 

  59. Finnemann SC, Silverstein RL (2001) Differential roles of CD36 and αvβ5 integrin in photoreceptor phagocytosis by retinal pigment epithelium. J Exp Med 194:1289–1297

    Article  PubMed  CAS  Google Scholar 

  60. Houssier M, Raoul W, Lavalette S, Keller N, Guillonneau X, Baragatti B, Jonet L, Jeanny JC, Behar-Cohen F, Coceani F, Scherman D, Lachapelle P, Ong H, Chemtob S, Sennlaub F (2008) CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 5:e39

    Article  PubMed  CAS  Google Scholar 

  61. Primo L, Ferrandi C, Roca C, Marchio S, di Blasio L, Alessio M, Bussolino F (2005) Identification of CD36 molecular features required for its in vitro angiostatic activity. FASEB J 19:1713–1715

    PubMed  CAS  Google Scholar 

  62. Duncan KG, Bailey KR, Kane JP, Schwartz DM (2002) Human retinal pigment epithelial cells express scavenger receptors BI and BII. Biochem Biophys Res Commun 292:1017–1022

    Article  PubMed  CAS  Google Scholar 

  63. Graf GA, Matveev SV, Smart EJ (1999) Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med 9:221–225

    Article  PubMed  CAS  Google Scholar 

  64. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126:659–662

    Article  PubMed  CAS  Google Scholar 

  65. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R (2008) The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS ONE 3:e2119

    Article  PubMed  CAS  Google Scholar 

  66. Rodriguez-Martinez S, Cancino-Diaz ME, Jimenez-Zamudio L, Garcia-Latorre E, Cancino-Diaz JC (2005) TLRs and NODs mRNA expression pattern in healthy mouse eye. Br J Ophthalmol 89:904–910

    Article  PubMed  CAS  Google Scholar 

  67. Rosenzweig HL, Martin TM, Planck SR, Galster K, Jann MM, Davey MP, Kobayashi K, Flavell RA, Rosenbaum JT (2008) Activation of NOD2 in vivo induces IL-1β production in the eye via caspase-1 but results in ocular inflammation independently of IL-1 signaling. J Leukoc Biol 84:529–536

    Article  PubMed  CAS  Google Scholar 

  68. Gonzalez-Benitez JF, Juarez-Verdayes MA, Rodriguez-Martinez S, Cancino-Diaz ME, Garcia-Vazquez F, Cancino-Diaz JC (2008) The NALP3/cryopyrin–inflammasome complex is expressed in LPS-induced ocular inflammation. Mediators Inflamm 2008:614345

    Article  PubMed  CAS  Google Scholar 

  69. Arai J, Katai N, Kuida K, Kikuchi T, Yoshimura N (2006) Decreased retinal neuronal cell death in caspase-1 knockout mice. Jpn J Ophthalmol 50:417–425

    Article  PubMed  CAS  Google Scholar 

  70. Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta 1780:1291–1303

    PubMed  CAS  Google Scholar 

  71. Alizadeh P, Smit-McBride Z, Oltjen SL, Hjelmeland LM (2006) Regulation of cysteine cathepsin expression by oxidative stress in the retinal pigment epithelium/choroid of the mouse. Exp Eye Res 83:679–687

    Article  PubMed  CAS  Google Scholar 

  72. Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28:465–472

    Article  PubMed  CAS  Google Scholar 

  73. Mitchell CH, Reigada D (2008) Purinergic signalling in the subretinal space: a role in the communication between retina and PRE. Purinergic Signal 4:101–107

    Article  PubMed  CAS  Google Scholar 

  74. Dutot M, Liang H, Pauloin T, Brignole-Baudouin F, Baudouin C, Warnet JM, Rat P (2008) Effects of toxic cellular stresses and divalent cations on the human P2X7 cell death receptor. Mol Vis 14:889–897

    PubMed  CAS  Google Scholar 

  75. Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L (2006) IL-1β induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int 70:1935–1941

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the Academy of Finland, The Finnish Eye Foundation and the University of Kuopio, Finland. The authors thank Dr. Ewen MacDonald for checking the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salminen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaarniranta, K., Salminen, A. Age-related macular degeneration: activation of innate immunity system via pattern recognition receptors. J Mol Med 87, 117–123 (2009). https://doi.org/10.1007/s00109-008-0418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0418-z

Keywords

Navigation