Skip to main content
Log in

A novel myogenic cell line with phenotypic properties of muscle progenitors

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Skeletal myogenesis is a multistep process starting with progenitor cell proliferation, followed by their exit from the cell cycle, differentiation, alignment, and fusion to form multinucleated myotubes, typical of the differentiated muscle tissue. While the molecular players involved in early myogenesis have been extensively characterized, information about the later steps of the process is scanty. Here, we describe a novel myogenic cell line (MYOP7), composed of highly proliferating Sca-1+ muscle precursor cells, which can be induced to terminally differentiate into spontaneously contracting multinucleated myotubes. By performing high-density microarray analysis on these cells, we identified a series of genes, differentially expressed in proliferating vs differentiating conditions, which are candidates to play a major role in the later phase of myogenesis. In addition, we confirmed that the late stages of muscle differentiation are characterized by a marked upregulation of the cellular receptors for the vascular endothelial growth factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Emerson CP Jr (1993) Embryonic signals for skeletal myogenesis: arriving at the beginning. Curr Opin Cell Biol 5:1057–1064

    Article  PubMed  CAS  Google Scholar 

  2. Schultz E (1985) Satellite cells in normal, regenerating and dystrophic muscle. Adv Exp Med Biol 182:73–84

    PubMed  CAS  Google Scholar 

  3. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    Article  PubMed  CAS  Google Scholar 

  4. Bischoff R (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–147

    Article  PubMed  CAS  Google Scholar 

  5. Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat ML, Gabbiani G, Bader CR (1996) Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 60:47–57

    Article  PubMed  CAS  Google Scholar 

  6. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122

    Article  PubMed  CAS  Google Scholar 

  7. Huard J, Verreault S, Roy R, Tremblay M, Tremblay JP (1994) High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice. J Clin Invest 93:586–599

    Article  PubMed  CAS  Google Scholar 

  8. Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    Article  PubMed  CAS  Google Scholar 

  9. Mal A, Harter ML (2003) MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci U S A 100:1735–1739

    Article  PubMed  CAS  Google Scholar 

  10. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  PubMed  CAS  Google Scholar 

  11. Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, Usas A, Gates C, Robbins P, Wernig A, Huard J (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150:1085–1100

    Article  PubMed  CAS  Google Scholar 

  12. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

    Article  PubMed  CAS  Google Scholar 

  13. Jankowski RJ, Haluszczak C, Trucco M, Huard J (2001) Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum Gene Ther 12:619–628

    Article  PubMed  CAS  Google Scholar 

  14. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  PubMed  CAS  Google Scholar 

  15. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  PubMed  CAS  Google Scholar 

  16. Schiaffino S, Gorza L, Sartore S, Saggin L, Carli M (1986) Embryonic myosin heavy chain as a differentiation marker of developing human skeletal muscle and rhabdomyosarcoma. A monoclonal antibody study. Exp Cell Res 163:211–220

    Article  PubMed  CAS  Google Scholar 

  17. Saggin L, Ausoni S, Gorza L, Sartore S, Schiaffino S (1988) Troponin T switching in the developing rat heart. J Biol Chem 263:18488–18492

    PubMed  CAS  Google Scholar 

  18. Cheng J, Sun S, Tracy A, Hubbell E, Morris J, Valmeekam V, Kimbrough A, Cline MS, Liu G, Shigeta R, Kulp D, Siani-Rose MA (2004) NetAffx Gene Ontology Mining Tool: a visual approach for microarray data analysis. Bioinformatics 20:1462–1463

    Article  PubMed  CAS  Google Scholar 

  19. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673

    Article  PubMed  CAS  Google Scholar 

  20. Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zhang P (2003) Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics 82:109–121

    Article  PubMed  CAS  Google Scholar 

  21. Gao X, Chandra T, Gratton MO, Quelo I, Prud’homme J, Stifani S, St-Arnaud R (2001) HES6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program. J Cell Biol 154:1161–1171

    Article  PubMed  CAS  Google Scholar 

  22. Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18:95–101

    Article  PubMed  CAS  Google Scholar 

  23. Heo K, Ha SH, Chae YC, Lee S, Oh YS, Kim YH, Kim SH, Kim JH, Mizoguchi A, Itoh TJ, Kwon HM, Ryu SH, Suh PG (2006) RGS2 promotes formation of neurites by stimulating microtubule polymerization. Cell Signal 18:2182–2192

    Article  PubMed  CAS  Google Scholar 

  24. Appleton CT, James CG, Beier F (2006) Regulator of G-protein signaling (RGS) proteins differentially control chondrocyte differentiation. J Cell Physiol 207: 735–745

    Article  PubMed  CAS  Google Scholar 

  25. Imagawa M, Tsuchiya T, Nishihara T (1999) Identification of inducible genes at the early stage of adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 254:299–305

    Article  PubMed  CAS  Google Scholar 

  26. Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163:1417–1428

    PubMed  CAS  Google Scholar 

  27. Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A, Sinagra G, Giacca M (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 10:844–854

    Article  PubMed  CAS  Google Scholar 

  28. Wagatsuma A, Tamaki H, Ogita F (2007) Sequential expression of vascular endothelial growth factor, Flt-1, and KDR/Flk-1 in regenerating mouse skeletal muscle. Physiol Res 55:633–640

    Google Scholar 

  29. Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics 10:103–111

    PubMed  CAS  Google Scholar 

  30. Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS, Beggs AH (2004) Expression profiling and identification of novel genes involved in myogenic differentiation. Faseb J 18:403–405

    PubMed  CAS  Google Scholar 

  31. Kuninger D, Kuzmickas R, Peng B, Pintar JE, Rotwein P (2004) Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation. Genomics 84:876–889

    Article  PubMed  CAS  Google Scholar 

  32. Zhao P, Iezzi S, Carver E, Dressman D, Gridley T, Sartorelli V, Hoffman EP (2002) Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration. J Biol Chem 277:30091–30101

    Article  PubMed  CAS  Google Scholar 

  33. Cao B, Huard J (2004) Muscle-derived stem cells. Cell Cycle 3:104–107

    PubMed  CAS  Google Scholar 

  34. Epting CL, Lopez JE, Shen X, Liu L, Bristow J, Bernstein HS (2004) Stem cell antigen-1 is necessary for cell-cycle withdrawal and myoblast differentiation in C2C12 cells. J Cell Sci 117:6185–6195

    Article  PubMed  CAS  Google Scholar 

  35. Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236

    Article  PubMed  CAS  Google Scholar 

  36. Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    Article  PubMed  CAS  Google Scholar 

  37. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    Article  PubMed  CAS  Google Scholar 

  38. Ingi T, Aoki Y (2002) Expression of RGS2, RGS4 and RGS7 in the developing postnatal brain. Eur J Neurosci 15:929–936

    Article  PubMed  Google Scholar 

  39. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ (2003) Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111:1259

    Article  PubMed  CAS  Google Scholar 

  40. Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    Article  PubMed  CAS  Google Scholar 

  41. Tolosa L, Morla M, Iglesias A, Busquets X, Llado J, Olmos G (2005) IFN-gamma prevents TNF-alpha-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-kappaB activity. Cell Signal 17:1333–1342

    Article  PubMed  CAS  Google Scholar 

  42. Liao W, Hong SH, Chan BH, Rudolph FB, Clark SC, Chan L (1999) APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun 260:398–404

    Article  PubMed  CAS  Google Scholar 

  43. Mikl MC, Watt IN, Lu M, Reik W, Davies SL, Neuberger MS, Rada C (2005) Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol 25:7270–7277

    Article  PubMed  CAS  Google Scholar 

  44. Toyofuku T, Zhang H, Kumanogoh A, Takegahara N, Yabuki M, Harada K, Hori M, Kikutani H (2004) Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat Cell Biol 6:1204–1211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the FIRB program of the “Ministero dell’Istruzione, Universita’ e Ricerca”, Italy, from the “Fondazione CRTrieste” of Trieste, Italy and from Regione FVG, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Giacca.

Additional information

Mauro Giacca and Srdjan Djurovic share senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

109_2007_268_MOESM1_ESM.doc

Supplementary Figure

Differential expression of genes involved in proliferation and differentiation pathway in proliferating and differentiated MYOP7 cells. a Differential hybridization of 136 genes annotated as “Cell proliferation” (GO:0008283) displaying statistically significant altered expression in proliferating as compared to differentiated MYOP7 cells. b Hybridization of 231 genes defined as “Cell differentiation” (GO:0030254), with about 70 genes showing differential expression between proliferating and differentiated MYOP7 cells. c Hybdridization of genes annotated with “Development”, n = 799 (GO:0007275). In all panels, D Differentiation, P proliferation (PDF 884 kb)

Supplementary Fig. 1

Differential expression of genes involved in wound healing and of genes belonging to the Notch pathway. a Differential hybridization of genes annotated as “Response to wounding” (GO: 0009611; n = 89), displaying altered expression in proliferating compared to differentiated MYOP7 cells. b Differential expression of genes belonging to the Notch pathway (PDF 447 kb)

109_2007_268_MOESM4_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacchigna, S., Østli, E.K., Arsic, N. et al. A novel myogenic cell line with phenotypic properties of muscle progenitors. J Mol Med 86, 105–115 (2008). https://doi.org/10.1007/s00109-007-0268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0268-0

Keywords

Navigation