Skip to main content

Advertisement

Log in

Targeting protein–protein interactions for cancer therapy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

An increasing number of protein–protein interactions have been identified as potential intervention points for the development of anticancer agents. However, such systems have historically been considered high-risk targets due to the relatively large interaction surfaces involved in protein–protein binding. This characterization has to be reexamined as progress has been made recently in identifying small-molecule inhibitors of several protein–protein systems in oncology including the p53–MDM2 interaction. This review presents a survey of protein–protein interactions that have been identified as potential oncology targets and evaluates their attractiveness in terms of drug discovery. The analysis focuses primarily on the structural characteristics of the participating binding sites, particularly the dimensions of the sites. Known ligands are also examined, especially with regard to their druglikeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu E (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  Google Scholar 

  2. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone–receptor interface. Science 267:383–386

    PubMed  Google Scholar 

  3. Toogood PL (2002) Inhibition of protein–protein association by small molecules: approaches and progress. J Med Chem 45:1543–1558

    Article  PubMed  Google Scholar 

  4. Berg T (2003) Modulation of protein–protein interactions with small organic molecules. Angew Chem Int Ed Engl 42:2462–2481

    Article  PubMed  Google Scholar 

  5. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  PubMed  Google Scholar 

  6. McDowell RS, Blackburn BK, Gadek TR, McGee LR, Rawson T, Reynolds ME, Robarge KD, Somers TC, Thorsett ED, Tischler M, Webb RR, Venuti MC (1994) From peptide to non-peptide. 2. The de novo design of potent, non-peptidal inhibitors of platelet aggregation based on a benzodiazepine scaffold. J Am Chem Soc 116:5077–5083

    Article  Google Scholar 

  7. Ku TW, Ali FE, Barton, LS, Bean JW, Bondinell WE, Burgess JL, Callahan JF, Calvo RR, Chen L, Eggleston DS, Gleason JG, Huffman WF, Hwang SM, Jakas DR, Karash CB, Keenan RM, Kopple KD, Miller WH, Newlander KA, Nichols A, Parker MF, Peishoff CE, Samanen JM, Uzinskas I, Venslavsky JW (1993) Direct design of a potent non-peptide fibrinogen receptor antagonist based on the structure and conformation of a highly constrained cyclic RGD peptide. J Am Chem Soc 115:8861–8862

    Article  Google Scholar 

  8. Stahl M, Bur D, Schneider G (1999) Mapping of proteinase active sites by projection of surface-derived correlation vectors. J Comput Chem 20:336–347

    Article  Google Scholar 

  9. Graham TA, Weaver C, Mao F, Kimelman D, Xu W (2000) Crystal structure of a beta-catenin/Tcf complex. Cell 103:885–896

    Article  PubMed  Google Scholar 

  10. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cul1–Rbx1–Skp1–F box(Skp2) SCF ubiquitin ligase complex. Nature 416:703–709

    Article  PubMed  Google Scholar 

  11. Emerson SD, Madison VS, Palermo RE, Waugh DS, Scheffler JE, Tsao K-L, Kiefer SE, Liu SP, Fry DC (1995) Solution structure of the ras-binding domain of c-raf-1 and identification of its ras interaction surface. Biochemistry 34:6911–6918

    Article  PubMed  Google Scholar 

  12. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (1995) The 2.2 angstrom crystal structure of the ras-binding domain of the serine/threonine kinase c-raf-1 in complex with rap-1a and a GTP analog. Nature 375:554–560

    Article  PubMed  Google Scholar 

  13. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS (2002) Nat Struct Biol 9:117–120

    PubMed  Google Scholar 

  14. Tong L, Warren TC, King J, Betageri R, Rose J, Jakes S (1996) Crystal structures of the human p56lck SH2 domain in complex with two short phosphotyrosyl peptides at 1.0 A and 1.8 A resolution. J Mol Biol 256:601–610

    Article  PubMed  Google Scholar 

  15. Elia AEH, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo Box domain. Cell 115:83–95

    Article  PubMed  Google Scholar 

  16. Chen X, Bhandari R, Vinkemeier U, Van Den Akker F, Darnell JE, Kuriyan J (2003) A reinterpretation of the dimerization interface of the N-terminal domains of Stats. Protein Sci 12:361–365

    Article  PubMed  Google Scholar 

  17. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A 99:5271–5276

    Article  PubMed  Google Scholar 

  18. Himane JP, Rajashankar KR, Lackman M, Cowan CA, Henkemeyer M, Nikolov DB (2001) Crystal structure of an Eph receptor–ephrin complex. Nature 414:933–938

    Article  PubMed  Google Scholar 

  19. Rustandi RR, Baldisseri DM, Weber DJ (2000) Solution structure of the C-terminal negative regulatory domain of p53 bound to S100B(Bb). Nat Struct Biol 7:570–574

    Article  PubMed  Google Scholar 

  20. Markowitz J, Chen I, Gitti R, Baldisseri DM, Pan Y, Udan R, Carrier F, MacKerell AD, Weber D (2004) Identification and characterization of small molecule inhibitors of the calcium-dependent S100B–p53 tumor suppressor interaction. J Med Chem 47:5085–5093

    Article  PubMed  Google Scholar 

  21. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-XL–Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    Article  PubMed  Google Scholar 

  22. Kim KM, Giedt CD, Basanez G, O’Neill JW, Hill JJ, Han YH, Tzung SP, Zimmerberg J, Hockenbery DM, Zhang KYJ (2001) Biophysical characterization of recombinant human Bcl-2 and its interactions with an inhibitory ligand. Biochemistry 40:4911–4922

    Article  PubMed  Google Scholar 

  23. Nakashima T, Miura M, Hara M (2000) Tetrocardin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60:1229–1235

    PubMed  Google Scholar 

  24. Chan SL, Lee MC, Tan KO, Yang LK, Lee ASY, Flotow H, Fu NY, Butler MS, Soejarto DD, Buss AD, Yu VC (2003) Identification of chelerythrine as an inhibitor of Bcl-XL function. J Biol Chem 278:20453–20456

    Article  PubMed  Google Scholar 

  25. Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (2001) Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44:4313–4324

    Article  PubMed  Google Scholar 

  26. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasa SM, Croce C, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97:7124–7129

    Article  PubMed  Google Scholar 

  27. Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2 family proteins. Cancer Res 63:8118–8121

    PubMed  Google Scholar 

  28. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL. Nat Cell Biol 3:173–182

    Article  PubMed  Google Scholar 

  29. Yin H, Hamilton AD (2004) Terephthalamide derivatives as mimetics of the helical region of Bak peptide target Bcl-XL protein. Bioorg Med Chem Lett 14:1375–1379

    Article  PubMed  Google Scholar 

  30. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hadjuk P, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng SC, Nimmer PM, O’Connor JM, Oleksijew A, Petro AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature 435:677–681

    Article  PubMed  Google Scholar 

  31. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004–1008

    Article  PubMed  Google Scholar 

  32. Sun H, Nikolovska-Coleska Z, Yang CY, Xu L, Liu M, Tomita Y, Pan H, Yoshioka Y, Krajewski K, Roller PP, Wang S (2004) Structure-based design of potent, conformationally constrained Smac mimetics. J Am Chem Soc 126:16686–16687

    Article  PubMed  Google Scholar 

  33. Oost TK, Sun C, Armstrong RC, Al-Assaad A-S, Betz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47:4417–4426

    Article  PubMed  Google Scholar 

  34. Chene P (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3:102–109

    Article  PubMed  Google Scholar 

  35. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich N (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  PubMed  Google Scholar 

  36. Fry DC, Graves BJ, Vassilev LT (in press) Exploiting protein–protein interactions to design an activator of p53. In: Protein–protein interactions: a molecular cloning manual. Cold Spring Harbor Laboratory, New York

  37. Fry DC, Graves B, Vassilev LT (in press) Development of E3–substrate (MDM2–p53) binding inhibitors: structural aspects. Methods Enzymol

  38. Fry DC, Emerson SD, Palme S, Vu BT, Liu C-M, Podlaski F (2004) NMR structure of a complex between MDM2 and a small molecule inhibitor. J Biomol NMR 30:163–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyubomir T. Vassilev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, D.C., Vassilev, L.T. Targeting protein–protein interactions for cancer therapy. J Mol Med 83, 955–963 (2005). https://doi.org/10.1007/s00109-005-0705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0705-x

Keywords

Navigation