Skip to main content

Advertisement

Log in

An oncolytic adenovirus controlled by a modified telomerase promoter is attenuated in telomerase-negative cells, but shows reduced activity in cancer cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The promoter for human telomerase reverse transcriptase (hTERTp) is preferentially active in malignant cells. It was recently used to control the expression of the adenoviral E1A gene for the development of oncolytic adenoviruses. To ensure maximal repression in normal cells, the inclusion of additional E-boxes in the proximal region of the core promoter was described. We found that the transcriptional activity of this artificial sequence (T-255-4DEB) is minimal in normal cells, but it is also reduced in all the cancer cell lines tested. The cancer specificity of a new oncolytic adenovirus based in this promoter (AdTE1) was evaluated by direct comparison with wild-type adenovirus type 5 (AdWT) in vitro and in vivo. In all the parameters tested, AdTE1 was attenuated in normal cells, but the efficacy in cancer cells showed a parallel reduction, suggesting a lack of specificity. However, the cytotoxicity of AdTE1 was repressed in senescent cells compared to AdWT. Therefore, we conclude that AdTE1 is preferentially attenuated only in cells that are permanently devoid of telomerase expression such as senescent cells. Further modifications in the telomerase-based promoters should be introduced in order to combine maximal attenuation of oncolytic adenoviruses in normal tissues and enhanced activity in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shenk T (1996) Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields of virology. Lippincott-Raven, Philadelphia, PA, pp 2111–2147

    Google Scholar 

  2. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Lin J et al (1999) A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 10:1721–1733

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi M, Sato T, Sagawa T, Lu Y, Sato Y, Iyama S et al (2002) E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 5:627–634

    Google Scholar 

  4. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65:337–365

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959

    CAS  PubMed  Google Scholar 

  6. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–795

    Article  CAS  PubMed  Google Scholar 

  7. Kilian A, Bowtell DD, Abud HE, Hime GR, Venter DJ, Keese PK et al (1997) Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 6:2011–2019

    Google Scholar 

  8. Cech TR (2004) Beginning to understand the end of the chromosome. Cell 116:273–279

    Article  CAS  PubMed  Google Scholar 

  9. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  CAS  PubMed  Google Scholar 

  10. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    CAS  PubMed  Google Scholar 

  11. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  CAS  PubMed  Google Scholar 

  12. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809

    CAS  PubMed  Google Scholar 

  13. Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    Google Scholar 

  14. Ramakrishnan S, Eppenberger U, Mueller H, Shinkai Y, Narayanan R (1998) Expression profile of the putative catalytic subunit of the telomerase gene. Cancer Res 58:622–625

    CAS  PubMed  Google Scholar 

  15. Takakura M, Kyo S, Kanaya T, Tanaka M, Inoue M (1998) Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res 58:1558–1561

    CAS  PubMed  Google Scholar 

  16. Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425 (table of contents)

    Google Scholar 

  17. Kyo S, Takakura M, Taira T, Kanaya T, Itoh H, Yutsudo M et al (2000) Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 28:669–677

    Article  CAS  PubMed  Google Scholar 

  18. Crowe DL, Nguyen DC, Tsang KJ, Kyo S (2001) E2F-1 represses transcription of the human telomerase reverse transcriptase gene. Nucleic Acids Res 29:2789–2794

    Article  CAS  PubMed  Google Scholar 

  19. Crowe DL, Nguyen DC (2001) Rb and E2F-1 regulate telomerase activity in human cancer cells. Biochim Biophys Acta 1518:1–6

    CAS  PubMed  Google Scholar 

  20. Lin SY, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113:881–889

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Zhu J (2003) Evidence for a relief of repression mechanism for activation of the human telomerase reverse transcriptase promoter. J Biol Chem 278:18842–18850

    Article  CAS  PubMed  Google Scholar 

  22. Dessain SK, Yu H, Reddel RR, Beijersbergen RL, Weinberg RA (2000) Methylation of the human telomerase gene CpG island. Cancer Res 60:537–541

    CAS  PubMed  Google Scholar 

  23. Devereux TR, Horikawa I, Anna CH, Annab LA, Afshari CA, Barrett JC (1999) DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 59:6087–6090

    CAS  PubMed  Google Scholar 

  24. Cong YS, Bacchetti S (2000) Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem 275:35665–35668

    Article  CAS  PubMed  Google Scholar 

  25. Takakura M, Kyo S, Sowa Y, Wang Z, Yatabe N, Maida Y et al (2001) Telomerase activation by histone deacetylase inhibitor in normal cells. Nucleic Acids Res 29:3006–3011

    Article  CAS  PubMed  Google Scholar 

  26. Won J, Chang S, Oh S, Kim TK (2004) Small-molecule-based identification of dynamic assembly of E2F-pocket protein–histone deacetylase complex for telomerase regulation in human cells. Proc Natl Acad Sci U S A 101:11328–11333

    Article  CAS  PubMed  Google Scholar 

  27. Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M et al (1999) Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 59:551–557

    CAS  PubMed  Google Scholar 

  28. Horikawa I, Cable PL, Afshari C, Barrett JC (1999) Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 59:826–830

    CAS  PubMed  Google Scholar 

  29. Cong YS, Wen J, Bacchetti S (1999) The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 8:137–142

    Google Scholar 

  30. Ducrest AL, Szutorisz H, Lingner J, Nabholz M (2002) Regulation of the human telomerase reverse transcriptase gene. Oncogene 21:541–552

    Article  CAS  PubMed  Google Scholar 

  31. Kirch HC, Ruschen S, Brockmann D, Esche H, Horikawa I, Barrett JC et al (2002) Tumor-specific activation of hTERT-derived promoters by tumor suppressive E1A-mutants involves recruitment of p300/CBP/HAT and suppression of HDAC-1 and defines a combined tumor targeting and suppression system. Oncogene 21:7991–8000

    Article  CAS  PubMed  Google Scholar 

  32. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB et al (2003) Telomerase maintains telomere structure in normal human cells. Cell 114:241–253

    Article  CAS  PubMed  Google Scholar 

  33. Lanson NA Jr, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G (2003) Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res 63:7936–7941

    CAS  PubMed  Google Scholar 

  34. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL (2003) Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 10:1241–1247

    Article  CAS  PubMed  Google Scholar 

  35. Huang Q, Zhang X, Wang H, Yan B, Kirkpatrick J, Dewhrist MW et al (2004) A novel conditionally replicative adenovirus vector targeting telomerase-positive tumor cells. Clin Cancer Res 10:1439–1445

    CAS  PubMed  Google Scholar 

  36. Irving J, Wang Z, Powell S, O’Sullivan C, Mok M, Murphy B et al (2004) Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther 11:174–185

    Article  CAS  PubMed  Google Scholar 

  37. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL et al (2003) A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 63:3181–3188

    CAS  PubMed  Google Scholar 

  38. Su CQ, Sham J, Xue HB, Wang XH, Chua D, Cui ZF et al (2004) Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol 130:591–603

    Article  CAS  PubMed  Google Scholar 

  39. Zou W, Luo C, Zhang Z, Liu J, Gu J, Pei Z et al (2004) A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent. Oncogene 23:457–464

    Article  CAS  PubMed  Google Scholar 

  40. Kim E, Kim JH, Shin HY, Lee H, Yang JM, Kim J et al (2003) Ad-mTERT-delta19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner. Hum Gene Ther 14:1415–1428

    Article  CAS  PubMed  Google Scholar 

  41. Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F et al (2004) Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10:285–292

    CAS  PubMed  Google Scholar 

  42. Horikawa I, Cable PL, Mazur SJ, Appella E, Afshari CA, Barrett JC (2002) Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression. Mol Biol Cell 13:2585–2597

    Google Scholar 

  43. Schiedner G, Hertel S, Kochanek S (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 11:2105–2116

    Article  CAS  PubMed  Google Scholar 

  44. Kramer MG, Barajas M, Razquin N, Berraondo P, Rodrigo M, Wu C et al (2003) In vitro and in vivo comparative study of chimeric liver-specific promoters. Mol Ther 7:375–385

    Google Scholar 

  45. Qian C, Bilbao R, Bruna O, Prieto J (1995) Induction of sensitivity to ganciclovir in human hepatocellular carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase. Hepatology 22:118–123

    Article  CAS  PubMed  Google Scholar 

  46. Mazzolini G, Qian C, Narvaiza I, Barajas M, Borras-Cuesta F, Xie X et al (2000) Adenoviral gene transfer of interleukin 12 into tumors synergizes with adoptive T cell therapy both at the induction and effector level. Hum Gene Ther 11:113–125

    Article  CAS  PubMed  Google Scholar 

  47. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514

    Article  CAS  PubMed  Google Scholar 

  48. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Izumi Horikawa (National Cancer Institute, Bethesda, MD) for the pBT-255 and pBT-255-4DEB plasmids, Helena Villanueva for technical assistance, Javier Dotor for the FJD cells and Michel Centelles for assistance with flow cytometry. This work was supported by grant SAF2003-08385 from the Spanish Department of Science and Technology and the UTE project CIMA. RHA is a recipient of a Ramon y Cajal research contract. MGK is a recipient of a Fondo de Investigacion Sanitaria (FIS) research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hernandez-Alcoceba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortolanza, S., Qian, C., Kramer, M.G. et al. An oncolytic adenovirus controlled by a modified telomerase promoter is attenuated in telomerase-negative cells, but shows reduced activity in cancer cells. J Mol Med 83, 736–747 (2005). https://doi.org/10.1007/s00109-005-0681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0681-1

Keywords

Navigation