Skip to main content
Log in

Combining advanced radiotherapy technologies to maximize safety and tumor control probability in stage III non-small cell lung cancer

Kombination moderner Bestrahlungstechniken zur Maximierung von Sicherheit und Tumorkontrollwahrscheinlichkeit beim nicht-kleinzelligen Bronchialkarzinom im Stadium III

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The goal of the current study was to investigate the tumor control probability (TCP) of advanced radiotherapy technologies for stage III non-small cell lung cancer (NSCLC) and to evaluate potential interplay effects between their applications.

Materials and methods

Three-dimensional conformal radiotherapy (3D-CRT) with conventionally fractionated doses of 66 Gy served as reference for 13 patients with stage III NSCLC. Isotoxic dose escalation relative to the corresponding 3D-CRT plans was performed for three technologies and their combinations: intensity-modulated radiotherapy (IMRT), IMRT with a simultaneous integrated boost (IMRT-SIB) of 10% to the gross tumor volume (GTV), and adaptive re-planning twice during the treatment course (ART). All analyses were based on accumulated dose distributions using deformable image registration of CT images, which were acquired weekly during the treatment course.

Results

IMRT reduced the mean lung dose (MLD) by 5.6% ± 3.8% compared to 3D-CRT. ART resulted in lung sparing of 7.9% ± 4.8% and 9.2% ± 3.9% in 3D-CRT and IMRT planning, respectively. IMRT and ART escalated the irradiation dose by 6.6% ± 3.2% and 8.8% ± 6.3%, respectively, which was not statistically different. For the 7 patients with the largest GTVs, IMRT-SIB was superior to IMRT and ART with dose escalation of 11.9% ± 3.7%. The combination of ART, IMRT, and SIB achieved maximum dose escalation in all 13 patients by 17.1% ± 5.4% on average, which increased TCP from 19.9% ± 7.0 to 37.1% ± 10.1%. Adaptive re-planning was required to continuously conform the escalated and hypofractionated SIB doses to the shrinking tumor.

Conclusion

Combining advanced radiotherapy technologies is considered as a safe and effective strategy to maximize local tumor control probability in stage III NSCLC.

Zusammenfassung

Hintergrund

Ziel dieser Planungsstudie waren die Quantifizierung der lokalen Tumorkontrollwahrscheinlichkeit (TCP) beim lokal fortgeschrittenen Bronchialkarzinom (NSCLC) nach Simulation moderner Bestrahlungstechniken sowie die Ermittlung möglicher Wechselwirkungen der Anwendungen.

Material und Methoden

Die 3-D-konformale Strahlentherapie (3-D-CRT) mit einer konventionell fraktionierten Dosis von 66 Gy diente als Referenz für 13 NSCLC-Patienten im Stadium III. Es wurden die Möglichkeiten zur isotoxischen Bestrahlungsintensivierung mittels dreier fortschrittlicher Bestrahlungstechniken und deren Kombinationen untersucht: Intensitätsmodulierte Strahlentherapie (IMRT), IMRT mit simultan integriertem Boost (IMRT-SIB) von 10% zum makroskopisch sichtbaren Tumorvolumen (GTV) und 2-malige adaptive Replanung während der Behandlungsserie (ART). Alle Analysen basieren auf akkumulierter Dosisverteilung indem eine nichtrigide Bildregistrierung wöchentlich wiederholter CT-Aufnahmen durchgeführt wurde.

Ergebnisse

Im Vergleich zur 3-D-CRT reduzierte die IMRT die mittlere Lungendosis (MLD) um 5,6% ± 3,8%. ART verminderte die Lungenbelastung um jeweils 7,9% ± 4,8% bzw. 9,2% ± 3,9% bei 3-D-CRT oder IMRT-Planung. Die IMRT und ART ermöglichten eine Bestrahlungsintensivierung um 6,6% ± 3,2% bzw. 8,8% ± 6,3%. Dieser Unterschied war nicht statistisch signifikant. In der Subgruppe der 7 Patienten mit den größten Tumorvolumina erzielte die IMRT-SIB mit 11,9% ± 3,7% die signifikant höchste Dosiseskalation. Die Kombination von ART, IMRT und SIB war den einzelnen Technologien in allen 13 Patienten überlegen und erlaubte eine Dosissteigerung um 17,1% ± 5,4%, was die TCP von 19,9% ± 7,0% auf 37,1% ± 10,1% verbesserte. Adaptive Replanung war notwendig, um die hypofraktionierte SIB-Dosis auf den kontinuierlich schrumpfenden Tumor zu begrenzen.

Schlussfolgerung

Die Kombination von modernen Bestrahlungstechniken wird als sichere und effektive Strategie angesehen, um die Tumorkontrollwahrscheinlichkeit beim lokal fortgeschrittenen NSCLC zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Auperin A, Le Pechoux C, Rolland E et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28:2181–2190

    Article  PubMed  CAS  Google Scholar 

  2. Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187:284–291

    Article  PubMed  Google Scholar 

  3. Bortfeld T, Jokivarsi K, Goitein M et al (2002) Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 47:2203–2220

    Article  PubMed  Google Scholar 

  4. Brenner DJ (1993) Dose, volume, and tumor-control predictions in radiotherapy. Int J Radiat Oncol Biol Phys 26:171–179

    Article  PubMed  CAS  Google Scholar 

  5. Chapet O, Thomas E, Kessler ML et al (2005) Esophagus sparing with IMRT in lung tumor irradiation: an EUD-based optimization technique. Int J Radiat Oncol Biol Phys 63:179–187

    Article  PubMed  Google Scholar 

  6. Christian JA, Bedford JL, Webb S et al (2007) Comparison of inverse-planned three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:735–741

    Article  PubMed  Google Scholar 

  7. De Gersem WR, Derycke S, Colle CO et al (1999) Inhomogeneous target-dose distributions: a dimension more for optimization? Int J Radiat Oncol Biol Phys 44:461–468

    Article  Google Scholar 

  8. Feng M, Kong FM, Gross M et al (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 73:1228–1234

    Article  PubMed  Google Scholar 

  9. Fenwick JD, Nahum AE, Malik ZI et al (2009) Escalation and intensification of radiotherapy for stage III non-small cell lung cancer: opportunities for treatment improvement. Clin Oncol (R Coll Radiol) 21:343–360

    Google Scholar 

  10. Gillham C, Zips D, Ponisch F et al (2008) Additional PET/CT in week 5–6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning? Radiother Oncol 88:335–341

    Article  PubMed  Google Scholar 

  11. Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890

    Article  PubMed  Google Scholar 

  12. Grutters JP, Kessels AG, Pijls-Johannesma M et al (2010) Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol 95:32–40

    Article  PubMed  CAS  Google Scholar 

  13. Guckenberger M, Baier K, Richter A et al (2009) Evolution of surface-based deformable image registration for adaptive radiotherapy of non-small cell lung cancer (NSCLC). Radiat Oncol 4:68

    Article  PubMed  Google Scholar 

  14. Guckenberger M, Krieger T, Richter A et al (2009) Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol 91:288–295

    Article  PubMed  Google Scholar 

  15. Guckenberger M, Richter A, Wilbert J et al (2011) Adaptive radiotherapy for locally advanced non-small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. Int J Radiat Oncol Biol Phys 81:e275–e282

    Article  PubMed  Google Scholar 

  16. Guckenberger M, Richter A, Wilbert J et al (2011) Adaptive radiotherapy for locally advanced non-small cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. IJROBP 81:e275–282

    Google Scholar 

  17. Guckenberger M, Wilbert J, Richter A et al (2011) Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 79:901–908

    Article  PubMed  Google Scholar 

  18. Kupelian PA, Ramsey C, Meeks SL et al (2005) Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys 63:1024–1028

    Article  PubMed  Google Scholar 

  19. Liao ZX, Komaki RR, Thames HD Jr et al (2010) Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 76:775–781

    Article  PubMed  Google Scholar 

  20. Liu HH, Wang X, Dong L et al (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58:1268–1279

    Article  PubMed  Google Scholar 

  21. Martel MK, Ten Haken RK, Hazuka MB et al (1999) Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24:31–37

    Article  PubMed  CAS  Google Scholar 

  22. Nakayama H, Satoh H, Kurishima K et al (2010) High-dose conformal radiotherapy for patients with stage III non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 78:645–650

    Article  PubMed  Google Scholar 

  23. Nguyen PL, Gu X, Lipsitz SR et al (2011) Cost implications of the rapid adoption of newer technologies for treating prostate cancer. J Clin Oncol 29:1517–1524

    Article  PubMed  Google Scholar 

  24. Palma D, Visser O, Lagerwaard FJ et al (2010) Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non-small-cell lung cancer: a population-based time-trend analysis. J Clin Oncol 28:5153–5159

    Article  PubMed  Google Scholar 

  25. Ramsey CR, Langen KM, Kupelian PA et al (2006) A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys 64:1237–1244

    Article  PubMed  Google Scholar 

  26. Schwarz M, Alber M, Lebesque JV et al (2005) Dose heterogeneity in the target volume and intensity-modulated radiotherapy to escalate the dose in the treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 62:561–570

    Article  PubMed  Google Scholar 

  27. Sonke JJ, Lebesque Jvan Herk M (2008) Variability of four-dimensional computed tomography patient models. Int J Radiat Oncol Biol Phys 70:590–598

    Article  PubMed  Google Scholar 

  28. Tome WA, Fowler JF (2000) Selective boosting of tumor subvolumes. Int J Radiat Oncol Biol Phys 48:593–599

    Article  PubMed  CAS  Google Scholar 

  29. Wurstbauer K, Weise H, Deutschmann H et al (2010) Non-small cell lung cancer in stages I-IIIB: Long-term results of definitive radiotherapy with doses >/= 80 Gy in standard fractionation. Strahlenther Onkol 186: 551–557

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The support by Professor Michael Brada and the fruitful discussions with him during the Research Fellowship at the Royal Marsden Hospital are highly acknowledged. MG was supported by the grant GU 1170/1-1 of the German Research Foundation. The work was partially supported by the grant 2007.074.2 of the Wilhelm Sander-Stiftung, München, Germany. MP and AK acknowledge funding from CR UK under grant C46/A10588 and NHS funding from the NIHR Biomedical Research Centre. The support for using the research version of the Pinnacle treatment planning software from Philips Radiation Oncology Systems, Fitchburg, WI, USA, is acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guckenberger MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guckenberger, M., Kavanagh, A. & Partridge, M. Combining advanced radiotherapy technologies to maximize safety and tumor control probability in stage III non-small cell lung cancer. Strahlenther Onkol 188, 894–900 (2012). https://doi.org/10.1007/s00066-012-0161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0161-9

Keywords

Schlüsselwörter

Navigation