Skip to main content
Log in

Impact of Cochlear Implant Array Placement on Speech Perception

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the role of flat panel computed tomography (FPCT) in the evaluation of cochlear implant (CI) electrode position and its relation to speech perception.

Methods

From March 2015 to March 2019, we retrospectively enrolled deaf subjects ≥ 18 years who underwent unilateral CI by one surgeon, imaged with FPCT and assessed with disyllabic words score before CI and at 6 months of follow-up. We calculated the disyllabic score difference before CI and after CI (ΔSDS) and divided the subjects in favorable and unfavorable outcome groups using the median ΔSDS as a cutoff. We compared the demographic, clinical, electrode characteristics, and the CI positioning variables scalar position, surgical insertion depth (SID), linear insertion depth (LID), angular insertion depth (AID) and wrapping factor (WF).

Results

We studied 50 subjects (F/M = 27/23; median age = 60.5 years, IQR: 50–70 years). The median ΔSDS was 80% (interquartile range [IQR]: 60–100%) in quiet and 80% (IQR: 47.5–100%) in noise. Of the subjects 23 demonstrated a favorable outcome and had earlier age at CI (median 52 years; IQR 45–67 years versus median 62 years; IQR: 56–71 years p = 0.032) and a significantly higher SID (median: 4.02 mm IQR: 3.00–5.35 mm versus median: 2.94 mm IQR: 2.06–3.90 mm; p = 0.029). No difference was found for LID (p = 0.977), AID (p = 0.302), and WF (p = 0.224). A logistic regression model built with the age at CI, number of CI electrodes, and the SID was significant χ2 ((df = 3, N = 50) = 14.517, p = 0.002). The model explained 33.7% (Nagelkerke R2) of ΔSDS variance and correctly classified 76% of the cases.

Conclusion

The SID measured by FPCT predicts the ΔSDS at 6 months follow-up, alongside with age at implantation and number of CI electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AID:

Angular insertion depth

CI:

Cochlear implant

ΔSDS:

Disyllabic word score difference at 6‑months follow-up after surgery

ERW:

Extended round window approach

FPCT:

Flat panel computed tomography

LID:

Linear insertion depth

MDCT:

Multi-detector computed tomography

PTA:

Pure tone average

RW:

Round window

SID:

Surgical insertion depth

SSHL:

Sensorineural hearing loss

ST:

Scala tympani

SV:

Scala vestibuli

WF:

Wrapping factor

References

  1. Kong YY, Stickney GS, Zeng FG. Speech and melody recognition in binaurally combined acoustic and electric hearing. J Acoust Soc Am. 2005;117:1351–61.

    Article  Google Scholar 

  2. Gantz BJ, Turner CW. Combining acoustic and electrical hearing. Laryngoscope. 2003;113:1726–30.

    Article  Google Scholar 

  3. Dallos P. Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR, editors. The cochlea. Berlin, Heidelberg, New York: Springer; 1996. pp. 1–43.

    Chapter  Google Scholar 

  4. Wanna GB, O’Connell BP, Francis DO, Gifford RH, Hunter JB, Holder JT, Bennett ML, Rivas A, Labadie RF, Haynes DS. Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope. 2018;128:482–9.

    Article  Google Scholar 

  5. Holden LK, Finley CC, Firszt JB, Holden TA, Brenner C, Potts LG, Gotter BD, Vanderhoof SS, Mispagel K, Heydebrand G, Skinner MW. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2013;34:342–60.

    Article  Google Scholar 

  6. O’Connell BP, Cakir A, Hunter JB, Francis DO, Noble JH, Labadie RF, Zuniga G, Dawant BM, Rivas A, Wanna GB. Electrode Location and Angular Insertion Depth Are Predictors of Audiologic Outcomes in Cochlear Implantation. Otol Neurotol. 2016;37:1016–23.

    Article  Google Scholar 

  7. van der Marel KS, Briaire JJ, Verbist BM, Muurling TJ, Frijns JH. The influence of cochlear implant electrode position on performance. Audiol Neurootol. 2015;20:202–11.

    Article  Google Scholar 

  8. Czerny C, Steiner E, Gstoettner W, Baumgartner WD, Imhof H. Postoperative radiographic assessment of the Combi 40 cochlear implant. AJR Am J Roentgenol. 1997;169:1689–94.

    Article  CAS  Google Scholar 

  9. Xu J, Xu SA, Cohen LT, Clark GM. Cochlear view: postoperative radiography for cochlear implantation. Am J Otol. 2000;21(1):49–56.

    Article  CAS  Google Scholar 

  10. Swartz JD, Russell KB, Wolfson RJ, Marlowe FI. High resolution computed tomography in evaluation of the temporal bone. Head Neck Surg. 1984;6:921–31.

    Article  CAS  Google Scholar 

  11. Fritz P, Rieden K, Lenarz T, Haels J, zum Winkel K. Radiological evaluation of temporal bone disease: high-resolution computed tomography versus conventional X-ray diagnosis. Br J Radiol. 1989;62:107–13.

    Article  CAS  Google Scholar 

  12. Whiting BR, Holden TA, Brunsden BS, Finley CC, Skinner MW. Use of computed tomography scans for cochlear implants. J Digit Imaging. 2008;21:323–8.

    Article  Google Scholar 

  13. Whiting BR, Bae KT, Skinner MW. Cochlear implants: three-dimensional localization by means of coregistration of CT and conventional radiographs. Radiology. 2001;221:543–9.

    Article  CAS  Google Scholar 

  14. van Wermeskerken GK, van Olphen AF, Graamans K. Imaging of electrode position in relation to electrode functioning after cochlear implantation. Eur Arch Otorhinolaryngol. 2009;266:1527–31.

    Article  Google Scholar 

  15. Pearl MS, Roy A, Limb CJ. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants. AJNR Am J Neuroradiol. 2014;35:1202–8.

    Article  CAS  Google Scholar 

  16. Kennedy TA, Connell N, Szczykutowicz T, Schafer S, Royalty K, Nace S, Gartrell B, Gubbels S. Flat-Panel CT for Cochlear Implant Electrode Imaging: Comparison to Multi-Detector CT. Otol Neurotol. 2016;37:1646–53.

    Article  Google Scholar 

  17. Jiam NT, Gilbert M, Cooke D, Jiradejvong P, Barrett K, Caldwell M, Limb CJ. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users. JAMA Otolaryngol Head Neck Surg. 2019;145:109–16.

    Article  Google Scholar 

  18. Nordfalk KF, Rasmussen K, Hopp E, Bunne M, Silvola JT, Jablonski GE. Insertion Depth in Cochlear Implantation and Outcome in Residual Hearing and Vestibular Function. Ear Hear. 2016;37:e129–37.

    Article  Google Scholar 

  19. Menegatti Pavan AL, Alves AFF, Giacomini G, Altemani JMC, Castilho AM, Lauria RA, da Silva VAR, Guimarães AC, de Pina DR. Cochlear implants: Insertion assessment by computed tomography. Am J Otolaryngol. 2018;39:431–5.

    Article  Google Scholar 

  20. Verschuur C, Hellier W, Teo C. An evaluation of hearing preservation outcomes in routine cochlear implant care: implications for candidacy. Cochlear Implants Int. 2016;17(Suppl 1):62–5.

    Article  Google Scholar 

  21. O’Connell BP, Hunter JB, Haynes DS, Holder JT, Dedmon MM, Noble JH, Dawant BM, Wanna GB. Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes. Laryngoscope. 2017;127:2352–7.

    Article  Google Scholar 

  22. Yukawa K, Cohen L, Blamey P, Pyman B, Tungvachirakul V, O’Leary S. Effects of insertion depth of cochlear implant electrodes upon speech perception. Audiol Neurootol. 2004;9:163–72.

    Article  Google Scholar 

  23. Skinner MW, Holden TA, Whiting BR, Voie AH, Brunsden B, Neely JG, Saxon EA, Hullar TE, Finley CC. In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. Ann Otol Rhinol Laryngol Suppl. 2007;197:2–24.

    Article  Google Scholar 

  24. Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol. 2008;29:920–8.

    Article  Google Scholar 

  25. Skinner MW, Ketten DR, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol. 2002;3:332–50.

    Article  Google Scholar 

  26. Filipo R, Mancini P, Panebianco V, Viccaro M, Covelli E, Vergari V, Passariello R. Assessment of intracochlear electrode position and correlation with behavioural thresholds in CII and 90K cochlear implants. Acta Otolaryngol. 2008;128:291–6.

    Article  CAS  Google Scholar 

  27. Dorman MF, Spahr T, Gifford R, Loiselle L, McKarns S, Holden T, Skinner M, Finley C. An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear. J Assoc Res Otolaryngol. 2007;8:234–40.

    Article  Google Scholar 

  28. van der Beek FB, Boermans PP, Verbist BM, Briaire JJ, Frijns JH. Clinical evaluation of the Clarion CII HiFocus 1 with and without positioner. Ear Hear. 2005;26:577–92.

    Article  Google Scholar 

  29. Waltzman SB, Fisher SG, Niparko JK, Cohen NL. Predictors of postoperative performance with cochlear implants. Ann Otol Rhinol Laryngol Suppl. 1995;165:15–8.

    CAS  PubMed  Google Scholar 

  30. Lin FR, Chien WW, Li L, Clarrett DM, Niparko JK, Francis HW. Cochlear implantation in older adults. Medicine. 2012;91:229–41.

    Article  Google Scholar 

  31. Tun PA, Williams VA, Small BJ, Hafter ER. The effects of aging on auditory processing and cognition. Am J Audiol. 2012;21:344–50.

    Article  Google Scholar 

  32. Schmiedt RA. The physiology of cochlear presbycusis. In: Gordon-Salant S, Frisina RD, Popper AN, Fay RR, editors. The aging auditory system. New York: Springer; 2010. pp. 9–38.

    Chapter  Google Scholar 

  33. Won JH, Drennan WR, Kang RS, Rubinstein JT. Psychoacoustic abilities associated with music perception in cochlear implant users. Ear Hear. 2010;31:796–805.

    Article  Google Scholar 

  34. Dincer D’Alessandro H, Ballantyne D, Boyle PJ, De Seta E, DeVincentiis M, Mancini P. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients. Ear Hear. 2018;39:679–86.

    Article  Google Scholar 

  35. Shannon RV, Fu QJ, Galvin J 3rd. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol Suppl. 2004;552:50–4.

    Article  Google Scholar 

  36. Snel-Bongers J, Briaire JJ, Vanpoucke FJ, Frijns JHM. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation. Ear Hear. 2012;33:367–76.

    Article  Google Scholar 

  37. Jones GL, Won JH, Drennan WR, Rubinstein JT. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users. J Acoust Soc Am. 2013;133:425–33.

    Article  Google Scholar 

  38. Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am. 2001;110:1150–63.

    Article  CAS  Google Scholar 

  39. Frijns JHM, Kalkman RK, Vanpoucke FJ, Bongers JS, Briaire JJ. Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities. Acta Otolaryngol. 2009;129:433–9.

    Article  Google Scholar 

  40. Biesheuvel JD, Briaire JJ, de Jong MAM, Boehringer S, Frijns JHM. Channel discrimination along all contacts of the cochlear implant electrode array and its relation to speech perception. Int J Audiol. 2019;58:262–8.

    Article  Google Scholar 

  41. Stock A, Bozzato V, Kloska SP, Bozzato A, Hoppe U, Hornung J, Dörfler A, Struffert T. Evaluation after cochlear implant surgery: Correlation of clinical outcome and imaging findings using flat detector CT. Clin Neuroradiol. 2020. https://doi.org/10.1007/s00062-020-00922-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lo Russo.

Ethics declarations

Conflict of interest

F. Lo Russo, G. Conte, F. Di Berardino, S. Cavicchiolo, S. Casale, L. Caschera, L. Lombardi, F. Triulzi and D. Zanetti declare that they have no competing interests.

Ethical standards

This observational retrospective study was conducted under the research protocols (ID numbers 468_2018bis 2nd Jan 2019) approved by the Institutional Review Board (IRB) of Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico.

Supplementary Information

62_2021_1046_MOESM1_ESM.tiff

Online resource 1: (ad) Bland Altman chart for evaluation of interrater reliability of measurements of surgical insertion depth (SID) (a), linear insertion depth (LID) (b), angular insertion depth (AID) (c), and wrapping factor (WF) (d). The two dashed lines correspond to the upper and lower limits of agreement for each measurement estimated (according to the Bland Altman method). The vertical axis represents the differences between the first and the second operator measurements for each metric. The horizontal axis represents the mean of estimation of first and the second operator measurements for each metric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Russo, F., Conte, G., Di Berardino, F. et al. Impact of Cochlear Implant Array Placement on Speech Perception. Clin Neuroradiol 32, 175–183 (2022). https://doi.org/10.1007/s00062-021-01046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-021-01046-w

Keywords

Navigation