Skip to main content
Log in

Antioxidant activities and transition metal ion chelating studies of some hydroxyl Schiff base derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Several hydroxyl Schiff base (HSB) compounds (110) with good radical scavenging activity (RSA) were designed. Compounds 6, 7, and 10 showed better RSAs than the common synthetic antioxidant 2,6-diter-butyl-4-methylphenol (BHT) in DPPH and ABTS assays. To probe whether these HSB compounds may exert their antioxidant effect through transition metal ion chelation, the copper and ferrous chelating abilities of them were investigated. It was found by fluorescence quenching spectra that the binding constants K a were in the range of 0.85×103–7.30×104 M−1. Further study was carried out by the complexation of a representative compound 5 with ferrous ion in mass spectrum. A 2:1 5-ferrous complex was readily formed in a methanol–water solution (v:v, 8:2), which confirmed that the chelation happened when the HSB compounds were treated with transition metal ions. The above results indicated that the transition metal ion chelation play an important role in their antioxidant abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Eftink MR (1991) Fluorescence quenching reactions. In: Dewey TG (ed) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Press, New York, pp 1–44

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hipkiss AR (2005) Glycation, ageing and carnosine: are carnivorous diets beneficial. Mech Ageing Dev 126:1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Lakowica JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  • Lee YL, Yen MT, Mau JL (2007) Antioxidant properties of various extracts from Hypizigus marmoreus. Food Chem 104:1–9

    Article  CAS  Google Scholar 

  • Maurice RE, Camillo AG (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–212

    Article  Google Scholar 

  • Pan YM, Zhu JC, Wang HS, Zhang XP, Zhang Y, He CH, Ji XW, Li HY (2007) Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem 103:913–918

    Article  CAS  Google Scholar 

  • Pan YM, He CH, Wang HS, Ji XW, Wang K, Liu PZ (2010) Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chem 121:497–502

    Article  CAS  Google Scholar 

  • Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescene quenching study. J Agric Food Chem 53:158–163

    Article  PubMed  CAS  Google Scholar 

  • Perez CA, Wei Y, Guo M (2009) Iron-binding and anti-Fenton properties of baicalein and baicalin. J Inorg Biochem 103:326–332

    Article  PubMed  CAS  Google Scholar 

  • Tang YZ, Liu ZQ (2007) Free-radical-scavenging effect of carbazole derivatives on DPPH and ABTS radicals. Cell Biochem Funct 25:149–158

    Article  PubMed  CAS  Google Scholar 

  • Wang HX, Tang YZ, Liu ZQ (2007) Ability of Schiff bases with hydroxyl-substituent to scavenge radicals. Chin J Synth Chem 24:1105–1108

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 20762001), the Project of the Key Laboratory of Medicinal Chemical Resources and Molecular Engineering, Guangxi Normal University, China (No.0630006-5D09), and the Guangxi Department of Education research project (No. 200807MS075, 200807MS076, 200911MS281, 200911MS282).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Liang, Xianghui Yi or Hengshan Wang.

Appendix: synthesis of the derivatives

Appendix: synthesis of the derivatives

Synthesis

General procedure for the preparation of 110: the mixture of aminophenol (5 mmol), aromatic aldehydes (6 mmol), ethanol (10 ml), and triethylamine (0.1 mmol) was refluxed at 90°C for 2 h and then filtered to give crystal or powder of HSB derivatives.

Spectra data for compounds 110

Compound 1: 1H NMR (DMSO, 500HZ) δ: 9.50 (s, 1H, OH), 8.62 (s, 1H, N=CH), 7.90 (d, J = 7.67 Hz, 2H, Ar-H), 7.49–7.51 (m, 3H, Ar-H), 7.21 (d, J = 8.57 Hz, 2H, Ar-H), 6.82 (d, J = 8.57 Hz, 2H, Ar-H). EMS: m/z: 198 [M + H]+.

Compound 2: 1H NMR (DMSO, 500HZ) δ: 8.29 (d, J = 7.20 Hz, 1H, N=CH), 7.90 (d, J = 8.50 Hz, 1H, Ar-H), 7.68 (dd, J = 8.79 Hz, 5.5 Hz, 2H, Ar-H), 7.62 (t, J = 7.26 Hz, 1H, OH), 7.51 (d, J = 7.38 Hz, 1H, Ar-H), 7.37 (d, J = 7.27 Hz, 1H, Ar-H), 7.29 (s, 2H, Ar-H), 6.83 (t, J = 7.30 Hz, 1H, Ar-H), 6.65 (t, J = 7.57 Hz, 1H, Ar-H), 6.18 (d, J =  7.5 Hz, 1H, Ar-H). EMS: m/z: 198 [M + H]+

Compound 3: 1H NMR (DMSO,500HZ) δ: 13.12 (s, 1H, OH), 9.64 (s, 1H, OH), 8.91 (s, 1H, N=CH), 7.67 (d, J = 7.53 Hz, 1H, Ar-H), 7.42 (d, J = 7.75 Hz, 1H, Ar-H), 7.25 (d, J = 7.86 Hz, 1H, Ar-H), 6.96 (d, J = 7.47 Hz, 2H, Ar-H), 6.84 (d, J = 7.65 Hz, 1H, Ar-H), 6.78–6.74 (m, 2H, Ar-H). EMS: m/z: 214 [M+H]+.

Compound 4: 1H NMR (DMSO,500HZ) δ: 13.41 (s, 1H, OH), 9.67 (s, 1H, OH), 8.91 (s, 1H, N=CH), 7.60 (d, J = 8.11 Hz, 1H, Ar-H), 7.32-7.39 (m, 3H, Ar-H), 6.93-6.98 (m, 2H, Ar-H), 6.85 (d, J = 8.6 Hz, 2H, Ar-H). EMS: m/z: 214 [M + H]+.

Compound 5: 1H NMR (DMSO,500HZ) δ: 13.76 (s, 1H, OH), 9.71 (s, 1H, OH), 8.97 (s, 1H, N=CH), 7.62 (d, J = 7.50 Hz, 1H, Ar-H), 7.36-7.41 (m, 2H, Ar-H), 7.14 (t, J = 7.50 Hz, 1H, Ar-H), 6.87–6.98 (m, 4H, Ar-H). EMS: m/z: 214 [M + H]+.

Compound 6: 1H NMR (DMSO,500HZ) δ: 9.42 (1s, 1H, OH), 8.58 (s, 1H, N=CH), 7.82 (d, 2H, J = 8.84Hz, Ar-H), 7.28 (d, J = 7.87Hz, 1H, Ar-H), 7.14 (d, J = 7.94Hz, 1H, Ar-H), 7.01 (d, J = 8.16Hz, 1H, Ar-H), 6.91 (d, J = 7.5Hz, 1H, Ar-H), 6.78 (d, J = 8.9Hz, 2H, Ar-H), 3.01 (s, 6H, CH3). EMS: m/z: 241 [M + H]+

Compound 7: 1H NMR (DMSO, 500HZ) δ: 9.31 (1s, 1H, OH), 8.39 (s, 1H, N=CH), 7.70 (d, J = 8.67 Hz, 2H, Ar-H), 7.10 (d, J = 8.56 Hz, 2H, Ar-H), 6.77 (m, 4H, Ar-H), 3.00 (s, 6H, CH3). EMS: m/z: 241 [M + H]+.

Compound 8: 1H NMR (DMSO,500HZ) δ: 9.48 (s, 1H, OH), 8.38 (d, J = 8.78 Hz, 1H, N=CH), 7.63 (d, J = 7.39 Hz, 2H, Ar-H), 7.33-7.42 (3H, m, Ar-H), 7.26 (d, J = 15.96 Hz, 1H, Ar-H), 7.07-7.12 (m, 3H, Ar-H), 6.76 (d, 2H, J = 7.76 Hz, =CH). EMS: m/z: 224 [M + H]+.

Compound 9: 1H NMR (DMSO,500HZ) δ: 9.77 (s, 1H, OH), 8.39 (d, J = 8.78 Hz, 1H, N=CH), 7.77 (d, J = 7.39 Hz, 2H, Ar-H), 7.35–7.44 (3H, m, Ar-H), 7.28 (d, J = 15.96 Hz, 1H, Ar-H), 7.09–7.14 (m, 3H, Ar-H), 6.73 (d, 2H, J = 7.76 Hz, =CH). EMS: m/z: 224 [M + H]+.

Compound 10: 1H NMR (DMSO, 500 Hz) δ: 9.90 (s, 1H, OH), 8.41 (s, 1H, N=CH), 7.83 (d, J = 7.37 Hz, 1H), 7.20 (d, J = 8.73 Hz, 2H), 7.07 (t, J = 11.62 Hz, 1H), 6.80 (d, J = 8.32, 2H), 6.67 (d, J = 7.47 Hz, 1H), 6.53-6.46 (m, 1H). EMS: m/z:188 [M + H]+.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zou, B., Wang, K. et al. Antioxidant activities and transition metal ion chelating studies of some hydroxyl Schiff base derivatives. Med Chem Res 21, 1341–1346 (2012). https://doi.org/10.1007/s00044-011-9648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9648-7

Keywords

Navigation