Skip to main content
Log in

On Representations of Integers in Thin Subgroups of \({{\rm SL}_2({\mathbb {Z}})}\)

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

An Erratum to this article was published on 20 November 2010

Abstract

Let \({\Gamma < {\rm SL}(2, {\mathbb Z})}\) be a free, finitely generated Fuchsian group of the second kind with no parabolics, and fix two primitive vectors \({v_{0}, w_{0} \in \mathbb {Z}^{2} \, {\backslash} \, \{0\}}\). We consider the set \({\mathcal {S}}\) of all integers occurring in \({\langle v_{0}\gamma, w_{0}\rangle}\), for \({\gamma \in \Gamma}\) and the usual inner product on \({\mathbb {R}^2}\). Assume that the critical exponent δ of Γ exceeds 0.99995, so that Γ is thin but not too thin. Using a variant of the circle method, new bilinear forms estimates and Gamburd’s 5/6-th spectral gap in infinite-volume, we show that \({\mathcal {S}}\) contains almost all of its admissible primes, that is, those not excluded by local (congruence) obstructions. Moreover, we show that the exceptional set \({\mathfrak {E}(N)}\) of integers |n| < N which are locally admissible \({(n \in \mathcal {S} \, \, ({\rm mod} \, q) \, \, {\rm for\,all} \,\, q \geq 1)}\) but fail to be globally represented, \({n \notin \mathcal {S}}\), has a power savings, \({|\mathfrak {E}(N)| \ll N^{1-\varepsilon_{0}}}\) for some \({\varepsilon_{0} > 0}\), as N → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bourgain and E. Fuchs, A proof of the positive density conjecture for integer Apollonian circle packings, preprint (2010); http://arxiv.org/abs/1001.3894

  2. Bourgain J., Gamburd A., Sarnak P.: Sieving and expanders. C. R. Math. Acad. Sci. Paris 343(3), 155–159 (2006)

    MATH  MathSciNet  Google Scholar 

  3. J. Bourgain, A. Gamburd, P. Sarnak. Affine linear sieve, expanders, and sum-product, preprint (2008).

  4. J. Bourgain, A. Kontorovich, P. Sarnak, Sector estimates for hyperbolic isometries, to appear in the same issue as the paper giving this reference; http://arxiv.org/abs/1001.4541.

  5. Epstein C.L.: Asymptotics for closed geodesics in a homology class, the finite volume case. Duke Math. J. 55(4), 717–757 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Fuchs, K. Sanden, Some experiments with integral apollonian circle packings, Exp. Math., to appear.

  7. Gamburd A.: On the spectral gap for infinite index “congruence” subgroups of SL2(Z). Israel J. Math. 127, 157–200 (2002)

    Article  MathSciNet  Google Scholar 

  8. Graham R.L., Lagarias J.C., Mallows C.L., Wilks A.R., Yan C.H.: Apollonian circle packings: number theory. J. Numb. Th. 100, 1–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kontorovich A.V.: The hyperbolic lattice point count in infinite volume with applications to sieves. Duke J. Math. 149(1), 1–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Kontorovich, H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, preprint (2008); http://arxiv.org/abs/0811.2236

  11. A. Kontorovich, H. Oh, Almost prime Pythagorean triples in thin orbits, preprint (2009); http://arxiv.org/abs/1001.0370

  12. Lax P.D., Phillips R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean space. Journal of Functional Analysis 46, 280–350 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Montgomery H.L., Vaughan R.C.: The exceptional set in Goldbach’s problem. Acta Arith. 27, 353–370 (1975)

    MATH  MathSciNet  Google Scholar 

  14. A. Nevo, P. Sarnak, Prime and almost prime integral points on principal homogeneous spaces, preprint (2009).

  15. P. Sarnak, Letter to J. Lagarias, 2007; online at http://www.math.princeton.edu/sarnak

  16. Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. 50, 171–202 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kontorovich.

Additional information

Bourgain is partially supported by NSF grant DMS-0808042. Kontorovich is partially supported by NSF grants DMS-0802998 and DMS-0635607, and the Ellentuck Fund at IAS.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00039-010-0104-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgain, J., Kontorovich, A. On Representations of Integers in Thin Subgroups of \({{\rm SL}_2({\mathbb {Z}})}\) . Geom. Funct. Anal. 20, 1144–1174 (2010). https://doi.org/10.1007/s00039-010-0093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0093-4

Keywords and phrases

2010 Mathematics Subject Classification

Navigation