Skip to main content
Log in

Denjoy–Carleman Differentiable Perturbation of Polynomials and Unbounded Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({t\mapsto A(t)}\) for \({t\in T}\) be a C M-mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here C M stands for C ω (real analytic), a quasianalytic or non-quasianalytic Denjoy–Carleman class, C , or a Hölder continuity class C 0,α. The parameter domain T is either \({\mathbb R}\) or \({\mathbb R^n}\) or an infinite dimensional convenient vector space. We prove and review results on C M-dependence on t of the eigenvalues and eigenvectors of A(t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese A.A., Jornet D., Oliaro A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Int. Equ. Oper. Theor. 66(2), 153–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseevsky D., Kriegl A., Losik M., Michor P.W.: Choosing roots of polynomials smoothly. Israel J. Math. 105, 203–233 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio L., Fusco N., Pallara D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000)

    MATH  Google Scholar 

  4. Baumgärtel, H.: Endlichdimensionale analytische Störungstheorie. Akademie, Berlin. Mathematische Lehrbücher und Monographien, II. Abteilung. Mathematische Monographien, Band 28 (1972)

  5. Bhatia R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  6. Bhatia R., Davis C., McIntosh A.: Perturbation of spectral subspaces and solution of linear operator equations. Linear Algebra Appl. 52/53, 45–67 (1983)

    MathSciNet  Google Scholar 

  7. Bonet J., Meise R., Melikhov S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 424–444 (2007)

    MathSciNet  Google Scholar 

  8. Chaumat J., Chollet A.-M.: Division par un polynôme hyperbolique. Can. J. Math. 56(6), 1121–1144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Giorgi E., Ambrosio L.: New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.(8) 82(2), 199–210 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Faure, C.-A.: Théorie de la différentiation dans les espaces convenables. Ph.D. thesis, Université de Genéve (1991)

  11. Frölicher A., Kriegl A.: Linear spaces and differentiation theory, pure and applied mathematics (New York). John Wiley & Sons Ltd. A Wiley-Interscience Publication, Chichester (1988)

    Google Scholar 

  12. Kato T.: Perturbation theory for linear operators, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol 132. Springer, Berlin (1976)

    Google Scholar 

  13. Kriegl, A., Michor, P.W.: The convenient setting of global analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997). http://www.ams.org/online_bks/surv53/

  14. Kriegl A., Michor P.W.: Differentiable perturbation of unbounded operators. Math. Ann. 327(1), 191–201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kriegl, A., Michor, P.W., Rainer, A.: Many parameter Hölder perturbation of unbounded operators. Math. Ann. (2011). doi:10.1007/s00208-011-0693-9. (published electronically on June 28, arXiv:math.FA/0611506)

  16. Kriegl A., Michor P.W., Rainer A.: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 256, 3510–3544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kriegl A., Michor P.W., Rainer A.: The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 261, 1799–1834 (2011)

    Article  MATH  Google Scholar 

  18. Kurdyka K., Paunescu L.: Hyperbolic polynomials and multiparameter real-analytic perturbation theory. Duke Math. J. 141(1), 123–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rainer A.: Perturbation of complex polynomials and normal operators. Math. Nach. 282(12), 1623–1636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rainer A.: Quasianalytic multiparameter perturbation of polynomials and normal matrices. Trans. Am. Math. Soc. 363(9), 4945–4977 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rellich F.: Störungstheorie der Spektralzerlegung. Math. Ann. 113(1), 600–619 (1937)

    Article  MathSciNet  Google Scholar 

  22. Rellich F.: Störungstheorie der Spektralzerlegung V. Math. Ann. 118, 462–484 (1942)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Rainer.

Additional information

AK was supported by FWF-Project P 23028-N13, PM by FWF-Project P 21030-N13, AR by FWF-Projects J 2771-N13 and P 22218-N13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriegl, A., Michor, P.W. & Rainer, A. Denjoy–Carleman Differentiable Perturbation of Polynomials and Unbounded Operators. Integr. Equ. Oper. Theory 71, 407 (2011). https://doi.org/10.1007/s00020-011-1900-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-011-1900-5

Mathematics Subject Classification (2010)

Keywords

Navigation