Skip to main content
Log in

The exportomer: the peroxisomal receptor export machinery

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novikoff AB, Novikoff PM, Davis C, Quintana N (1973) Studies on microperoxisomes. V. Are microperoxisomes ubiquitous in mammalian cells? J Histochem Cytochem 21(8):737–755

    Article  PubMed  CAS  Google Scholar 

  2. Cooper TG, Beevers H (1969) Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244(13):3514–3520

    PubMed  CAS  Google Scholar 

  3. Lazarow PB, DeDuve C (1976) A fatty acyl-CoA oxidazing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73:2043–2046

    Article  PubMed  CAS  Google Scholar 

  4. Kunau W-H, Bühne S, Moreno de la Garza M, Kionka C, Mateblowski M, Schultz-Borchard U, Thieringer R (1988) Comparative enzymology of β-oxidation. Biochem Soc Trans 16:418–420

    PubMed  CAS  Google Scholar 

  5. Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11(3):124–132

    Article  PubMed  CAS  Google Scholar 

  6. Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59(2):403–419

    Article  PubMed  CAS  Google Scholar 

  7. Joo HJ, Kim KY, Yim YH, Jin YX, Kim H, Kim MY, Paik YK (2010) Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J Biol Chem 285(38):29319–29325

    Article  PubMed  CAS  Google Scholar 

  8. Spiegel CN, Batista-Pereira LG, Bretas JA, Eiras AE, Hooper AM, Peixoto AA, Soares MJ (2011) Pheromone gland development and pheromone production in lutzomyia longipalpis (Diptera: psychodidae: phlebotominae). J Med Entomol 48(3):489–495

    Article  PubMed  CAS  Google Scholar 

  9. Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17(9):1121–1127

    Article  PubMed  CAS  Google Scholar 

  10. Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  PubMed  CAS  Google Scholar 

  11. Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Micobiol 76(17):5702–5709

    Article  CAS  Google Scholar 

  12. Müller WH, van der Krift TP, Krouwer AJ, Wösten HA, van der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10(2):489–495

    PubMed  Google Scholar 

  13. Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJ (2012) Phylloquinone (Vitamin K(1)) Biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-coa. Plant J 71(2):205–215

    Article  PubMed  CAS  Google Scholar 

  14. Camões F, Bonekamp NA, Delille HK, Schrader M (2009) Organelle dynamics and dysfunction: a closer link between peroxisomes and mitochondria. J Inherit Metab Dis 32(2):163–180

    Article  PubMed  CAS  Google Scholar 

  15. Reumann S, Weber AP (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled–others remain. Biochim Biophys Acta 1763(12):1496–1510

    Article  PubMed  CAS  Google Scholar 

  16. Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763(12):1707–1720

    Article  PubMed  CAS  Google Scholar 

  17. Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763(12):1733–1748

    Article  PubMed  CAS  Google Scholar 

  18. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141(4):668–681

    Article  PubMed  CAS  Google Scholar 

  19. Kou J, Kovacs GG, Höftberger R, Kulik W, Brodde A, Forss-Petter S, Hönigschnabl S, Gleiss A, Brügger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122(3):271–283

    Article  PubMed  CAS  Google Scholar 

  20. Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L (2012) Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 29(2):241–254

    PubMed  CAS  Google Scholar 

  21. Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12(3):252–259

    Article  PubMed  CAS  Google Scholar 

  22. Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135(1):1–3

    Article  PubMed  CAS  Google Scholar 

  23. Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137(5):547–574

    Article  PubMed  CAS  Google Scholar 

  24. Kiel JA, Veenhuis M, van der Klei IJ (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7(10):1291–1303

    Article  PubMed  CAS  Google Scholar 

  25. Opaliński L, Veenhuis M, van der Klei IJ (2011) Peroxisomes: membrane events accompanying peroxisome proliferation. Int J Biochem Cell Biol 43(6):847–851

    Article  PubMed  CAS  Google Scholar 

  26. Nagotu S, Veenhuis M, Van der Klei IJ (2010) Divide et imera: the dictum of peroxisomes. Traffic 11(2):175–184

    Article  PubMed  CAS  Google Scholar 

  27. Fagarasanu A, Mast FD, Knoblach B, Rachubinski RA (2010) Molecular mechanism of organelle inheritance: lessons from peroxisomes in yeast. Nat Rev Mol Cell Biol 11(9):644–654

    Article  PubMed  CAS  Google Scholar 

  28. Girzalsky W, Platta HW, Erdmann R (2009) Protein transport across the peroxisomal membrane. Biol Chem 390(8):745–751

    Article  PubMed  CAS  Google Scholar 

  29. Zipor G, Haim-Vilmovsky L, Gelin-Licht R, Gadir N, Brocard C, Gerst JE (2009) Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sci USA 106(47):19848–19853

    PubMed  CAS  Google Scholar 

  30. Leon S, Goodman JM, Subramani S (2006) Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim Biophys Acta 1763(12):1552–1564

    Article  PubMed  CAS  Google Scholar 

  31. Schnell DJ, Hebert DN (2003) Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112(4):491–505

    Article  PubMed  CAS  Google Scholar 

  32. Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763(12):1565–1573

    Article  PubMed  CAS  Google Scholar 

  33. Gosh D, Berg JM (2010) A proteome-wide perspective on peroxisome targeting signal 1(PTS1)-Pex5p affinities. J Am Chem Soc 132(11):3973–3979

    Article  CAS  Google Scholar 

  34. Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108(5):1657–1664

    Article  PubMed  CAS  Google Scholar 

  35. Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen XY, Siemsen T, Morgenstern B, Meinicke P, Reumann S (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23(4):1556–1572

    Article  PubMed  CAS  Google Scholar 

  36. van der Leij I, van den Berg M, Boot R, Franse MM, Distel B, Tabak HF (1992) Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 119:153–162

    Article  PubMed  Google Scholar 

  37. Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M (2012) Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 10(4):e1001309

    Article  PubMed  CAS  Google Scholar 

  38. Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M (2006) Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 24(5):653–663

    Article  PubMed  CAS  Google Scholar 

  39. Lazarow PB (2006) The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta 1763(12):1599–1604

    Article  PubMed  CAS  Google Scholar 

  40. Marzioch M, Erdmann R, Veenhuis M, Kunau W-H (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J 13(30):4908–4918

    PubMed  CAS  Google Scholar 

  41. Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10(11):3255–3262

    PubMed  CAS  Google Scholar 

  42. Schliebs W, Kunau W-H (2006) PTS2 co-receptors: diverse proteins with common features. Biochim Biophys Acta 1763(12):1605–1612

    Article  PubMed  CAS  Google Scholar 

  43. Galland N, Demeure F, Hannaert V, Verplaetse E, Vertommen D, Van der Smissen P, Courtoy PJ, Michels PA (2007) Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei. Biochim Biophys Acta 1773(4):521–535

    Article  PubMed  CAS  Google Scholar 

  44. Ramon NM, Bartel B (2010) Interdependence of the peroxisome-targeting receptors in Arabidopsis thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into peroxisomes. Mol Biol Cell 21(7):1263–1271

    Article  PubMed  CAS  Google Scholar 

  45. Otzen M, Wang D, Lunenborg MG, van der Klei IJ (2005) Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2). J Cell Sci 118(Pt 15):3409–3418

    Article  PubMed  CAS  Google Scholar 

  46. Zhang L, Léon S, Subramani S (2006) Two independent pathways traffic the intraperoxisomal peroxin PpPex8p into peroxisomes: mechanism and evolutionary implications. Mol Biol Cell 17(2):690–699

    Article  PubMed  CAS  Google Scholar 

  47. Motley AM, Hettema EH, Ketting R, Plasterk R, Tabak HF (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 1(1):40–46

    Article  PubMed  CAS  Google Scholar 

  48. Gonzalez NH, Felsner G, Schramm FD, Klingl A, Maier UG, Bolte K (2011) A single peroxisomal targeting signal mediates matrix protein import in diatoms. PLoS ONE 6(9):e25316

    Article  PubMed  CAS  Google Scholar 

  49. Schäfer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W (2004) Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol Cell Biol 24(20):8895–8906

    Article  PubMed  CAS  Google Scholar 

  50. van der Klei IJ, Veenhuis M (2006) PTS1-independent sorting of peroxisomal matrix proteins by Pex5p. Biochim Biophys Acta 1763(12):1794–1800

    Article  PubMed  Google Scholar 

  51. Williams C, Distel B (2006) Pex13p: docking or cargo handling protein? Biochim Biophys Acta 1763(12):1585–1591

    Article  PubMed  CAS  Google Scholar 

  52. Azevedo JE, Schliebs W (2006) Pex14p, more than just a docking protein. Biochim Biophys Acta 1763(12):1574–1584

    Article  PubMed  CAS  Google Scholar 

  53. Neufeld C, Filipp FV, Simon B, Neuhaus A, Schüller N, David C, Kooshapur H, Madl T, Erdmann R, Schliebs W, Wilmanns M, Sattler M (2009) Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. EMBO J 28(6):745–754

    Article  PubMed  CAS  Google Scholar 

  54. Shiozawa K, Konarev PV, Neufeld C, Wilmanns M, Svergun DI (2009) Solution structure of human Pex5.Pex14.PTS1 protein complexes obtained by small angle X-ray scattering. J Biol Chem 284(37):25334–25342

    Article  PubMed  CAS  Google Scholar 

  55. Su JR, Takeda K, Tamura S, Fujiki Y, Miki K (2009) Crystal structure of the conserved N-terminal domain of the peroxisomal matrix protein import receptor, Pex14p. Proc Natl Acad Sci USA 106(2):417–421

    Article  PubMed  CAS  Google Scholar 

  56. Zutphen T, Veenhuis M, van der Klei IJ (2008) Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy 4(1):63–66

    PubMed  Google Scholar 

  57. Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R (2010) PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 124(10):1759–1768

    Article  CAS  Google Scholar 

  58. Huhse B, Rehling P, Albertini M, Blank L, Meller K, Kunau W-H (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J Cell Biol 140(1):49–60

    Article  PubMed  CAS  Google Scholar 

  59. Smith JJ, Szilard RK, Marelli M, Rachubinski RA (1997) The peroxin Pex17p of the yeast Yarrowia lipolytica is associated peripherally with the peroxisomal membrane and is required for the import of a subset of matrix proteins. Mol Cell Biol 17(5):2511–2520

    PubMed  CAS  Google Scholar 

  60. Managadze D, Würtz C, Wiese S, Schneider M, Girzalsky W, Meyer HE, Erdmann R, Warscheid B, Rottensteiner H (2010) Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur J Cell Biol 89(12):955–964

    Article  PubMed  CAS  Google Scholar 

  61. Opaliński L, Kiel JA, Homan TG, Veenhuis M, van der Klei IJ (2010) Penicillium chrysogenum Pex14/17p–a novel component of the peroxisomal membrane that is important for penicillin production. FEBS J 277(15):3203–3218

    Article  PubMed  CAS  Google Scholar 

  62. Erdmann R, Schliebs W (2005) Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 6(9):738–742

    Article  PubMed  CAS  Google Scholar 

  63. Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE (2002) Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem 278(1):226–232

    Article  PubMed  CAS  Google Scholar 

  64. Gouveia AM, Guimaraes CP, Oliveira ME, Sa-Miranda C, Azevedo JE (2002) Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J Biol Chem 278(7):4389–4392

    Article  PubMed  CAS  Google Scholar 

  65. Gouveia AM, Reguenga C, Oliveira ME, Sa-Miranda C, Azevedo JE (2000) Characterization of peroxisomal Pex5p from rat liver: Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 275(42):32444–32451

    Article  PubMed  CAS  Google Scholar 

  66. Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, Erdmann R, Kunau WH, Schliebs W (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281(37):27003–27015

    Article  PubMed  CAS  Google Scholar 

  67. Dammai V, Subramani S (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196

    Article  PubMed  CAS  Google Scholar 

  68. Kunau W (2001) Peroxisomes: the extended shuttle to the peroxisome matrix. Curr Biol 11(16):R659–R662

    Article  PubMed  CAS  Google Scholar 

  69. Nair DM, Purdue PE, Lazarow PB (2004) Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. J Cell Biol 167(4):599–604

    Article  PubMed  CAS  Google Scholar 

  70. Leon S, Zhang L, McDonald WH, Yates J 3rd, Cregg JM, Subramani S (2006) Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J Cell Biol 172(1):67–78

    Article  PubMed  CAS  Google Scholar 

  71. Hensel A, Beck S, El Magraoui F, Platta HW, Girzalsky W, Erdmann R (2011) Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286:43495–43505

    Article  PubMed  CAS  Google Scholar 

  72. Ma C, Schumann U, Rayapuram N, Subramani S (2009) The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 20(16):3680–3689

    Article  PubMed  CAS  Google Scholar 

  73. Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12(3):273–277

    PubMed  CAS  Google Scholar 

  74. Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, Grou CP, Carvalho AF, Fransen M, Sá-Miranda C, Azevedo JE (2011) PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J Biol Chem 286(47):40509–40519

    Article  PubMed  CAS  Google Scholar 

  75. Wang D, Visser NV, Veenhuis M, Van Der Klei IJ (2003) Physical interactions of the peroxisomal targeting signal 1-receptor, Pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 278:43340–43345

    Article  PubMed  CAS  Google Scholar 

  76. Rehling P, Skaletz-Rorowski A, Girzalsky W, Voorn-Brouwer T, Franse MM, Distel B, Veenhuis M, Kunau W-H, Erdmann R (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275(5):3593–3602

    Article  PubMed  CAS  Google Scholar 

  77. Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p. An intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11(3):635–646

    Article  PubMed  CAS  Google Scholar 

  78. Hazra PP, Suriapranata I, Snyder WB, Subramani S (2002) Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3(8):560–574

    Article  PubMed  CAS  Google Scholar 

  79. Kurochkin IV, Mizuno Y, Konagaya A, Sakaki Y, Schönbach C, Okazaki Y (2007) Novel peroxisomal protease Tysnd1 processes PTS1- and PTS2-containing enzymes involved in beta-oxidation of fatty acids. EMBO J 26(3):835–845

    Article  PubMed  CAS  Google Scholar 

  80. Okumoto K, Kametani Y, Fujiki Y (2011) Two proteases, Tysnd1 and PsLon, cooperatively regulate fatty-acid {beta}-oxidation in the peroxisomal matrix. J Biol Chem 286(52):44367–44379

    Article  PubMed  CAS  Google Scholar 

  81. Schuhmann H, Huesgen PF, Gietl C, Adamska I (2008) The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. Plant Physiol 148(4):1847–1856

    Article  PubMed  CAS  Google Scholar 

  82. Oeljeklaus S, Reinartz BS, Wolf J, Wiese S, Tonillo J, Podwojski K, Kuhlmann K, Stephan C, Meyer HE, Schliebs W, Brocard C, Erdmann R, Warscheid B (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11(4):2567–2580

    Article  PubMed  CAS  Google Scholar 

  83. Rosenkranz K, Birschmann I, Grunau S, Girzalsky W, Kunau WH, Erdmann R (2006) Functional association of the AAA complex and the peroxisomal importomer. FEBS J 273(16):3804–3815

    Article  PubMed  CAS  Google Scholar 

  84. Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25(24):10822–10832

    Article  PubMed  CAS  Google Scholar 

  85. Miyata N, Hosoi K, Mukai S, Fujiki Y (2009) In vitro import of peroxisome-targeting signal type 2 (PTS2) receptor Pex7p into peroxisomes. Biochim Biophys Acta 1793(5):860–870

    Article  PubMed  CAS  Google Scholar 

  86. Oliveira ME, Gouveia AM, Pinto RA, Sa-Miranda C, Azevedo JE (2003) The energetics of Pex5p-mediated peroxisomal protein import. J Biol Chem 278(41):39483–39488

    Article  PubMed  CAS  Google Scholar 

  87. Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7(8):817–822

    Article  PubMed  CAS  Google Scholar 

  88. El Magraoui F, Bäumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R (2012) The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J 279(11):2060–2070

    Article  PubMed  CAS  Google Scholar 

  89. Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sa-Miranda C, Azevedo JE (2008) Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem 283(21):14190–14197

    Article  PubMed  CAS  Google Scholar 

  90. Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R (2009) Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29(20):5505–5516

    Article  PubMed  CAS  Google Scholar 

  91. Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177(2):197–204

    Article  PubMed  CAS  Google Scholar 

  92. Williams C, van den Berg M, Geers E, Distel B (2008) Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem Biophys Res Commun 374(4):620–624

    Article  PubMed  CAS  Google Scholar 

  93. Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282(31):22534–22543

    Article  PubMed  CAS  Google Scholar 

  94. Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y (2011) AWP1/ZFAND6 functions in Pex5 export by interacting with Cys-mono ubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 13(1):168–183

    Article  PubMed  CAS  Google Scholar 

  95. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  PubMed  CAS  Google Scholar 

  96. Wang X, Herr RA, Hansen TH (2012) Ubiquitination of substrates by esterification. Traffic 13(1):19–24

    Article  PubMed  CAS  Google Scholar 

  97. Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282(43):31267–31272

    Article  PubMed  CAS  Google Scholar 

  98. Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12(8):1067–1083

    Article  PubMed  CAS  Google Scholar 

  99. Crane DI, Kalish JE, Gould SJ (1994) The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugation enzyme required for peroxisome assembly. J Biol Chem 269(34):21835–21844

    PubMed  CAS  Google Scholar 

  100. van der Klei IJ, Hilbrands RE, Kiel JAKW, Rasmussen SW, Cregg JM, Veenhuis M (1998) The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J 17(13):3608–3618

    Article  PubMed  Google Scholar 

  101. Wiebel FF, Kunau W-H (1992) The PAS2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 359(6390):73–76

    Article  PubMed  CAS  Google Scholar 

  102. Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17(12):3422–3435

    Article  PubMed  CAS  Google Scholar 

  103. Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S (1999) Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 146(1):99–112

    Article  PubMed  CAS  Google Scholar 

  104. Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M (2011) Insights into ubiquitin-conjugating enzyme/co-activator interactions from the structure of the Pex4p:pex22p complex. EMBO J 31(2):391–402

    Article  PubMed  CAS  Google Scholar 

  105. Biederer T, Volkwein C, Sommer T (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806–1809

    Article  PubMed  CAS  Google Scholar 

  106. Bazirgan OA, Hampton RY (2008) Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo. J Biol Chem 283(19):12797–12810

    Article  PubMed  CAS  Google Scholar 

  107. Kostova Z, Mariano J, Scholz S, Koenig C, Weissman AM (2009) A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J Cell Sci 122(9):1374–1381

    Article  PubMed  CAS  Google Scholar 

  108. Brzovic PS, Klevit RE (2006) Ubiquitin transfer from the E2 perspective: why is UbcH5 so promiscuous? Cell Cycle 5:2867–2873

    Article  PubMed  CAS  Google Scholar 

  109. Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A (1999) Identification of the ubiquitin carrier proteins, E2 s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem 274(21):14823–14830

    Article  PubMed  CAS  Google Scholar 

  110. Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC, Woods YL, Lane DP (2004) Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279(40):42169–42181

    Article  PubMed  CAS  Google Scholar 

  111. Kallijärvi J, Lahtinen U, Hämäläinen R, Lipsanen-Nyman M, Palvimo JJ, Lehesjoki AE (2005) TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res 308(1):146–155

    Article  PubMed  CAS  Google Scholar 

  112. Kallijarvi J, Avela K, Lipsanen-Nyman M, Ulmanen I, Lehesjoki AE (2002) The TRIM37 gene encodes a peroxisomal ring-b-box-coiled-coil protein: classification of Mulibrey Nanism as a New Peroxisomal Disorder. Am J Hum Genet 70(5):1215–1228

    Article  PubMed  CAS  Google Scholar 

  113. Ebberink MS, Mooijer PA, Gootjes J, Koster J, Wanders RJ, Waterham HR (2011) Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 32(1):59–69

    Article  PubMed  CAS  Google Scholar 

  114. Shimozawa N, Tsukamoto T, Suzuki Y, Orii T, Shirayoshi Y, Mori T, Fujiki Y (1992) A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255(5048):1132–1134

    Article  PubMed  CAS  Google Scholar 

  115. Tsukamoto T, Miura S, Fujiki Y (1991) Restoration by a 35 K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350(6313):77–81

    Article  PubMed  CAS  Google Scholar 

  116. Kee Y, Huibregtse JM (2007) Regulation of catalytic activities of HECT ubiquitin ligases. Biochem Biophys Res Commun 354(2):329–333

    Article  PubMed  CAS  Google Scholar 

  117. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  PubMed  CAS  Google Scholar 

  118. Burroughs AM, Iyer LM, Aravind L (2011) Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Mol BioSyst 7(7):2261–2277

    Article  PubMed  CAS  Google Scholar 

  119. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64(3):483–484

    CAS  Google Scholar 

  120. Koellensperger G, Daubert S, Erdmann R, Hann S, Rottensteiner H (2007) Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry. Biol Chem 388(11):1209–1214

    Article  PubMed  CAS  Google Scholar 

  121. Eisenhaber B, Chumak N, Eisenhaber F, Hauser MT (2007) The ring between ring fingers (RBR) protein family. Genome Biol 8(3):209

    Article  PubMed  CAS  Google Scholar 

  122. Albertini M, Girzalsky W, Veenhuis M, Kunau W-H (2001) Pex12p of Saccharomyces cerevisiae is a component of a multi-protein complex essential for peroxisomal matrix protein import. Eur J Cell Biol 80(4):257–270

    Article  PubMed  CAS  Google Scholar 

  123. Chang CC, Warren DS, Sacksteder KA, Gould SJ (1999) PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 147(4):761–774

    Article  PubMed  CAS  Google Scholar 

  124. Eckert JH, Johnsson N (2003) Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci 116(17):3623–3634

    Article  PubMed  CAS  Google Scholar 

  125. Okumoto K, Abe I, Fujiki Y (2000) Molecular Anatomy of the Peroxin Pex12p: rING Finger Domain Is Essential for the Pex12p Function and Interacts with the Peroxisome Targeting Signal Type 1-Receptor Pex5p and a RING Peroxin, Pex10p. J Biol Chem 275(33):25700–25710

    Article  PubMed  CAS  Google Scholar 

  126. Kiel JA, Emmrich K, Meyer HE, Kunau WH (2005) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280(3):1921–1930

    Article  PubMed  CAS  Google Scholar 

  127. Kragt A, Voorn-Brouwer T, van den Berg M, Distel B (2005) The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is mono ubiquitinated in wild type cells. J Biol Chem 280(9):7867–7874

    Article  PubMed  CAS  Google Scholar 

  128. Platta HW, Girzalsky W, Erdmann R (2004) Ubiquitination of the peroxisomal import receptor Pex5p. Biochem J 384(Pt 1):37–45

    PubMed  CAS  Google Scholar 

  129. Wei J, Zhai L, Xu J, Wang H (2006) Role of Bmi1 in H2A ubiquitylation and Hox gene silencing. J Biol Chem 281(32):22537–22544

    Article  PubMed  CAS  Google Scholar 

  130. Alchanati I, Teicher C, Cohen G, Shemesh V, Barr HM, Nakache P, Ben-Avraham D, Idelevich A, Angel I, Livnah N, Tuvia S, Reiss Y, Taglicht D, Erez O (2009) The E3 ubiquitin-ligase Bmi1/Ring1A controls the proteasomal degradation of Top2alpha cleavage complex—a potentially new drug target. PLoS ONE 4:e8104

    Article  PubMed  CAS  Google Scholar 

  131. Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A (2006) The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell 24(5):701–711

    Article  PubMed  CAS  Google Scholar 

  132. Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK (2006) Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J 25(11):2465–2474

    Article  PubMed  CAS  Google Scholar 

  133. Linares LK, Hengstermann A, Ciechanover A, Müller S, Scheffner M (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100(21):12009–12014

    Article  PubMed  CAS  Google Scholar 

  134. Mallery DL, Vandenberg CJ, Hiom K (2002) Activation of the E3 ligase function of the BRCA1/BARD1 complex by poly ubiquitin chains. EMBO J 21(24):6755–6762

    Article  PubMed  CAS  Google Scholar 

  135. Okamoto K, Taya Y, Nakagama H (2009) Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase. FEBS Lett 583(17):2710–2714

    Article  PubMed  CAS  Google Scholar 

  136. Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M (2007) Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 48(6):763–774

    Article  PubMed  CAS  Google Scholar 

  137. Prestele J, Hierl G, Scherling C, Hetkamp S, Schwechheimer C, Isono E, Weckwerth W, Wanner G, Gietl C (2010) Different functions of the C3HC4 zinc RING finger peroxins PEX10, PEX2, and PEX12 in peroxisome formation and matrix protein import. Proc Natl Acad Sci USA 107(33):14915–14920

    Article  PubMed  CAS  Google Scholar 

  138. Schumann U, Prestele J, O’Geen H, Brueggeman R, Wanner G, Gietl C (2007) Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci USA 104(3):1069–1074

    Article  PubMed  CAS  Google Scholar 

  139. Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM (1995) A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81(7):1043–1051

    Article  PubMed  CAS  Google Scholar 

  140. Peraza-Reyes L, Arnaise S, Zickler D, Coppin E, Debuchy R, Berteaux-Lecellier V (2011) The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway. Mol Microbiol 82(2):365–377

    Article  PubMed  CAS  Google Scholar 

  141. Peraza-Reyes L, Zickler D, Berteaux-Lecellier V (2008) The peroxisome RING-finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 9(11):1998–2009

    Article  PubMed  CAS  Google Scholar 

  142. Dodt G, Gould SJ (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 135:1763–1774

    Article  PubMed  CAS  Google Scholar 

  143. Fujiki Y, Nashiro C, Miyata N, Tamura S (1823) Okumoto K (2012) New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. Biochim Biophys Acta 1:145–149

    Google Scholar 

  144. Grimm I, Saffian D, Platta HW (1823) Erdmann R (2012) The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. Biochim Biophys Acta 1:150–158

    Google Scholar 

  145. Platta HW, Debelyy MO, El Magraoui F, Erdmann R (2008) The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p. Biochem Soc Trans 36:99–104

    Article  PubMed  CAS  Google Scholar 

  146. Birschmann I, Rosenkranz K, Erdmann R, Kunau WH (2005) Structural and functional analysis of the interaction of the AAA-peroxins Pex1p and Pex6p. FEBS J 272(1):47–58

    Article  PubMed  CAS  Google Scholar 

  147. Kiel JA, Hilbrands RE, Bovenberg RA, Veenhuis M (2000) Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis. Appl Microbiol Biotechnol 54(2):238–242

    Article  PubMed  CAS  Google Scholar 

  148. Kiel JA, Hilbrands RE, van der Klei IJ, Rasmussen SW, Salomons FA, van der Heide M, Faber KN, Cregg JM, Veenhuis M (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15(11):1059–1078

    Article  PubMed  CAS  Google Scholar 

  149. Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y (1998) A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 245(3):883–886

    Article  PubMed  CAS  Google Scholar 

  150. Tamura S, Yasutake S, Matsumoto N, Fujiki Y (2006) Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p. J Biol Chem 281(38):27693–27704

    Article  PubMed  CAS  Google Scholar 

  151. Birschmann I, Stroobants AK, Van Den Berg M, Schäfer A, Rosenkranz K, Kunau WH, Tabak HF (2003) Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol Biol Cell 14(6):2226–2236

    Article  PubMed  CAS  Google Scholar 

  152. Furuki S, Tamura S, Matsumoto N, Miyata N, Moser A, Moser HW, Fujiki Y (2006) Mutations in the peroxin Pex26p responsible for peroxisome biogenesis disorders of complementation group 8 impair its stability, peroxisomal localization, and interaction with the Pex1p x Pex6p complex. J Biol Chem 281(3):1317–1323

    Article  PubMed  CAS  Google Scholar 

  153. Goto S, Mano S, Nakamori C, Nishimura M (2011) Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. Plant Cell 23(4):1573–1587

    Article  PubMed  CAS  Google Scholar 

  154. Matsumoto N, Tamura S, Fujiki Y (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. NatCellBiol 5(5):454–460

    CAS  Google Scholar 

  155. Matsumoto N, Tamura S, Furuki S, Miyata N, Moser A, Shimozawa N, Moser HW, Suzuki Y, Kondo N, Fujiki Y (2003) mutations in novel peroxin gene PEX26 that cause peroxisome-biogenesis disorders of complementation group 8 provide a genotype-phenotype correlation. Am J Hum Genet 73(2):233–246

    Article  PubMed  CAS  Google Scholar 

  156. Geisbrecht BV, Collins CS, Reuber BE, Gould SJ (1998) Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc Natl Acad Sci U S A 95(15):8630–8635

    Article  PubMed  CAS  Google Scholar 

  157. Beyer A (1997) Sequence analysis of the AAA protein family. Protein Sci 6(10):2043–2058

    Article  PubMed  CAS  Google Scholar 

  158. Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Fröhlich KU, Kunau W-H (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64(3):499–510

    Article  PubMed  CAS  Google Scholar 

  159. Kunau W-H, Beyer A, Franken T, Götte K, Marzioch M, Saidowsky J, Skaletz-Rorowski A, Wiebel FF (1993) Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 75:209–224

    Article  PubMed  CAS  Google Scholar 

  160. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951

    PubMed  CAS  Google Scholar 

  161. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA + : a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27–43

    PubMed  CAS  Google Scholar 

  162. Wendler P, Ciniawsky S, Kock M (1823) Kube S (2012) Structure and function of the AAA + nucleotide binding pocket. Biochim Biophys Acta 1:2–14

    Google Scholar 

  163. Dargemont C, Ossareh-Nazari B (2012) Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways. Biochim Biophys Acta 1:138–414

    Article  CAS  Google Scholar 

  164. Zhao C, Smith EC (1823) Whiteheart SW (2012) Requirements for the catalytic cycle of the N-ethylmaleimide-sensitive factor (NSF). Biochim Biophys Acta 1:159–171

    Google Scholar 

  165. Nashiro C, Kashiwagi A, Matsuzaki T, Tamura S, Fujiki Y (2011) recruiting mechanism of the AAA peroxins, Pex1p and Pex6p, to Pex26p on peroxisome membrane. Traffic 12(6):774–788

    Article  PubMed  CAS  Google Scholar 

  166. Beuron F, Flynn TC, Ma J, Kondo H, Zhang X, Freemont PS (2003) Motions and negative cooperativity between p97 domains revealed by cryo-electron microscopy and quantised elastic deformational model. J Mol Biol 327(3):619–629

    Article  PubMed  CAS  Google Scholar 

  167. Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA + ATPases. J Struct Biol 146(1–2):11–31

    Article  PubMed  CAS  Google Scholar 

  168. Bebeacua C, Förster A, McKeown C, Meyer HH, Zhang X, Freemont PS (2012) Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 109(4):1098–1103

    Article  PubMed  CAS  Google Scholar 

  169. Davies JM, Brunger AT, Weis WI (2008) Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16(5):715–726

    Article  PubMed  CAS  Google Scholar 

  170. Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14(2):117–123

    Article  PubMed  CAS  Google Scholar 

  171. Titorenko VI, Rachubinski RA (2000) peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J Cell Biol 150(4):881–886

    Article  PubMed  CAS  Google Scholar 

  172. van der Zand A, Gent J, Braakman I, Tabak HF (2012) Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149(2):397–409

    Article  PubMed  CAS  Google Scholar 

  173. Jungwirth H, Ring J, Mayer T, Schauer A, Buttner S, Eisenberg T, Carmona-Gutierrez D, Kuchler K, Madeo F (2008) Loss of peroxisome function triggers necrosis. FEBS Lett 582(19):2882–2886

    Article  PubMed  CAS  Google Scholar 

  174. Seo JG, Lai CY, Miceli MV, Jazwinski SM (2007) A novel role of peroxin PEX6: suppression of aging defects in mitochondria. Aging Cell 6(3):405–413

    Article  PubMed  CAS  Google Scholar 

  175. Warner DR, Roberts EA, Greene RM, Pisano MM (2003) Identification of novel Smad binding proteins. Biochem Biophys Res Commun 312(4):1185–1190

    Article  PubMed  CAS  Google Scholar 

  176. Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3(8):740–744

    Article  PubMed  CAS  Google Scholar 

  177. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and poly ubiquitin chains. J Cell Biol 162(1):71–84

    Article  PubMed  CAS  Google Scholar 

  178. Schuberth C, Buchberger A (2008) UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci 65(15):2360–2371

    Article  PubMed  CAS  Google Scholar 

  179. Shiozawa K, Maita N, Tomii K, Seto A, Goda N, Akiyama Y, Shimizu T, Shirakawa M, Hiroaki H (2004) Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain. J Biol Chem 279(48):50060–50068

    Article  PubMed  CAS  Google Scholar 

  180. Park S, Isaacson R, Kim HT, Silver PA, Wagner G (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13(7):995–1005

    Article  PubMed  CAS  Google Scholar 

  181. Fenner BJ, Scannell M, Prehn JH (2009) Identification of poly ubiquitin binding proteins involved in NF-kappaB signaling using protein arrays. Biochim Biophys Acta 1794(7):1010–1016

    Article  PubMed  CAS  Google Scholar 

  182. Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL, Kilshaw PJ (2003) A novel type of deubiquitinating enzyme. J Biol Chem 278(25):23180–23186

    Article  PubMed  CAS  Google Scholar 

  183. Raiborg C, Slagsvold T, Stenmark H (2006) A new side to ubiquitin. Trends Biochem Sci 31(10):541–544

    Article  PubMed  CAS  Google Scholar 

  184. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699

    Article  PubMed  CAS  Google Scholar 

  185. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    Article  PubMed  CAS  Google Scholar 

  186. Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286(32):28223–28234

    Article  PubMed  CAS  Google Scholar 

  187. Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sa-Miranda C, Fransen M, Azevedo JE (2009) Properties of the ubiquitin-Pex5p thiol ester conjugate. J Biol Chem 284(16):10504–10513

    Article  PubMed  CAS  Google Scholar 

  188. Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on the ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287(16):12815–12827

    Article  PubMed  CAS  Google Scholar 

  189. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 mono ubiquitination. Cell 136(1):123–135

    Article  PubMed  CAS  Google Scholar 

  190. Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O’Rourke K, Bazan F, Eastham-Anderson J, Yue P, Dornan D, Huang DC, Dixit VM (2010) Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463:103–107

    Article  PubMed  CAS  Google Scholar 

  191. Nathan JA, Sengupta S, Wood SA, Admon A, Markson G, Sanderson C, Lehner PJ (2008) The ubiquitin E3 ligase MARCH7 is differentially regulated by the deubiquitylating enzymes USP7 and USP9X. Traffic 9(7):1130–1145

    Article  PubMed  CAS  Google Scholar 

  192. Imanaka T, Small GM, Lazarow PB (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol 105:2915–2922

    Article  PubMed  CAS  Google Scholar 

  193. Gabaldon T, Snel B, van Zimmeren F, Hemrika W, Tabak H, Huynen MA (2006) Origin and evolution of the peroxisomal proteome. Biol Direct 1:8

    Article  PubMed  CAS  Google Scholar 

  194. Schluter A, Fourcade S, Ripp R, Mandel JL, Poch O, Pujol A (2006) The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol Biol Evol 23(4):838–845

    Article  PubMed  CAS  Google Scholar 

  195. Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–460

    Article  PubMed  CAS  Google Scholar 

  196. Taylor EB, Rutter J (2011) Mitochondrial quality control by the ubiquitin-proteasome system. Biochem Soc Trans 39(5):1509–1513

    Article  PubMed  CAS  Google Scholar 

  197. Schliebs W, Girzalsky W, Erdmann R (2010) Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11(12):885–890

    Article  PubMed  CAS  Google Scholar 

  198. Ratzel SE, Lingard MJ, Woodward AW, Bartel B (2011) Reducing PEX13 expression ameliorates physiological defects of late-acting peroxin mutants. Traffic 12(1):121–134

    Article  PubMed  CAS  Google Scholar 

  199. Alencastre IS, Rodrigues TA, Grou CP, Fransen M, Sá-Miranda C, Azevedo JE (2009) Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway. J Biol Chem 284(40):27243–27251

    Article  PubMed  CAS  Google Scholar 

  200. Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9(2):543–550

    PubMed  CAS  Google Scholar 

  201. Seufert W, McGrath JP, Jentsch S (1990) UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J 9(13):4535–4541

    PubMed  CAS  Google Scholar 

  202. Leon S, Subramani S (2007) A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J Biol Chem 282(10):7424–7430

    Article  PubMed  CAS  Google Scholar 

  203. Carvalho AF, Grou CP, Pinto MP, Alencastre IS, Costa-Rodrigues J, Fransen M, Sa-Miranda C, Azevedo JE (2007) Functional characterization of two missense mutations in Pex5p - C11S and N526 K. Biochim Biophys Acta 1773(7):1141–1148

    Article  PubMed  CAS  Google Scholar 

  204. Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ (2000) The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p Act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 20(20):7516–7526

    Article  PubMed  CAS  Google Scholar 

  205. Zolman BK, Bartel B (2004) An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci USA 101(6):1786–1791

    Article  PubMed  CAS  Google Scholar 

  206. Kiel JA, Otzen M, Veenhuis M, van der Klei IJ (2005) Obstruction of poly ubiquitination affects PTS1 peroxisomal matrix protein import. Biochim Biophys Acta 1745(2):176–186

    Article  PubMed  CAS  Google Scholar 

  207. Lingard MJ, Monroe-Augustus M, Bartel B (2009) Peroxisome-associated matrix protein degradation in Arabidopsis. Proc Natl Acad Sci USA 106(11):4561–4566

    Article  PubMed  CAS  Google Scholar 

  208. Purdue PE, Lazarow PB (2001) Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem 276(50):47684–47689

    Article  PubMed  CAS  Google Scholar 

  209. Cadwell K, Coscoy L (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127–130

    Article  PubMed  CAS  Google Scholar 

  210. Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH (2007) Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol 177(4):613–624

    Article  PubMed  CAS  Google Scholar 

  211. Randow F, Lehner PJ (2009) Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11(5):527–534

    Article  PubMed  CAS  Google Scholar 

  212. Ishikura S, Weissman AM, Bonifacino JS (2010) Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem 285(31):23916–23924

    Article  PubMed  CAS  Google Scholar 

  213. Shimizu Y, Okuda-Shimizu Y, Hendershot LM (2010) Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell 40(6):917–926

    Article  PubMed  CAS  Google Scholar 

  214. Cadwell K, Coscoy L (2008) The specificities of Kaposi’s sarcoma-associated herpesvirus-encoded E3 ubiquitin ligases are determined by the positions of lysine or cysteine residues within the intracytoplasmic domains of their targets. J Virol 82(8):4184–4189

    Article  PubMed  CAS  Google Scholar 

  215. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–108

    Article  PubMed  CAS  Google Scholar 

  216. Berleth ES, Pickart CM (1996) Mechanism of ubiquitin conjugating enzyme E2–230 K: catalysis involving a thiol relay? Biochemistry 35(5):1664–1671

    Article  PubMed  CAS  Google Scholar 

  217. Grou CP, Carvalho AF, Pinto MP, Alencastre IS, Rodrigues TA, Freitas MO, Francisco T, Sa-Miranda C, Azevedo JE (2009) The peroxisomal protein import machinery–a case report of transient ubiquitination with a new flavor. Cell Mol Life Sci 66(2):254–262

    Article  PubMed  CAS  Google Scholar 

  218. Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22(9):1440–1451

    Article  PubMed  CAS  Google Scholar 

  219. Bonekamp NA, Völkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: struggling for balance. BioFactors 35(4):346–355

    Article  PubMed  CAS  Google Scholar 

  220. Fransen M, Nordgren M, Wang B (1822) Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 9:1363–1373

    Google Scholar 

Download references

Acknowledgments

We apologize to all the scientists whose work could not be cited due to space limitations. This work was supported by grants of the Deutsche Forschungsgemeinschaft (SFB 642) to RE and HWP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harald W. Platta or Ralf Erdmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platta, H.W., Hagen, S. & Erdmann, R. The exportomer: the peroxisomal receptor export machinery. Cell. Mol. Life Sci. 70, 1393–1411 (2013). https://doi.org/10.1007/s00018-012-1136-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1136-9

Keywords

Navigation