Skip to main content
Log in

Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  2. Glickman MH, Rubin DM, Fried VA, Finley D (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18:3149–3162

    PubMed  CAS  Google Scholar 

  3. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    PubMed  CAS  Google Scholar 

  4. Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, Muller B, Feng MT, Tubing F, Dittmar GA, Finley D (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730

    Article  PubMed  CAS  Google Scholar 

  5. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488

    Article  PubMed  CAS  Google Scholar 

  6. Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cell Mol Life Sci 61:1546–1561

    Article  PubMed  CAS  Google Scholar 

  7. Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M (1998) Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J Biol Chem 273:5461–5467

    Article  PubMed  CAS  Google Scholar 

  8. van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028

    PubMed  Google Scholar 

  9. Kim I, Mi K, Rao H (2004) Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 15:3357–3365

    Article  PubMed  CAS  Google Scholar 

  10. Li X, Su V, Kurata WE, Jin C, Lau AF (2008) A novel connexin43-interacting protein, CIP75, which belongs to the UbL–UBA protein family, regulates the turnover of connexin43. J Biol Chem 283:5748–5759

    Article  PubMed  CAS  Google Scholar 

  11. van der Spek PJ, Eker A, Rademakers S, Visser C, Sugasawa K, Masutani C, Hanaoka F, Bootsma D, Hoeijmakers JH (1996) XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res 24:2551–2559

    Article  PubMed  Google Scholar 

  12. Watkins JF, Sung P, Prakash L, Prakash S (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13:7757–7765

    PubMed  CAS  Google Scholar 

  13. Lombaerts M, Goeloe JI, den Dulk H, Brandsma JA, Brouwer J (2000) Identification and characterization of the rhp23(+) DNA repair gene in Schizosaccharomyces pombe. Biochem Biophys Res Commun 268:210–215

    Article  PubMed  CAS  Google Scholar 

  14. Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der Spek PJ, Bootsma D, Hoeijmakers JH, Hanaoka F (1994) Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13:1831–1843

    PubMed  CAS  Google Scholar 

  15. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22:4902–4913

    Article  PubMed  CAS  Google Scholar 

  16. Wilkinson CR, Seeger M, Hartmann-Petersen R, Stone M, Wallace M, Semple C, Gordon C (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3:939–943

    Article  PubMed  CAS  Google Scholar 

  17. Raasi S, Pickart CM (2003) Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278:8951–8959

    Article  PubMed  CAS  Google Scholar 

  18. Chen L, Madura K (2006) Evidence for distinct functions for human DNA repair factors hHR23A and hHR23B. FEBS Lett 580:3401–3408

    Article  PubMed  CAS  Google Scholar 

  19. Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T, Tanaka K, Hoeijmakers JH, Hanaoka F (1999) Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274:28019–28025

    Article  PubMed  CAS  Google Scholar 

  20. Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W, Madura K (1998) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715–718

    Article  PubMed  CAS  Google Scholar 

  21. Hwang GW, Sasaki D, Naganuma A (2005) Overexpression of Rad23 confers resistance to methylmercury in Saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins. Mol Pharmacol 68:1074–1078

    Article  PubMed  CAS  Google Scholar 

  22. Lambertson D, Chen L, Madura K (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153:69–79

    PubMed  CAS  Google Scholar 

  23. Hartmann-Petersen R, Hendil KB, Gordon C (2003) Ubiquitin binding proteins protect ubiquitin conjugates from disassembly. FEBS Lett 535:77–81

    Article  PubMed  CAS  Google Scholar 

  24. Ortolan TG, Chen L, Tongaonkar P, Madura K (2004) Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res 32:6490–6500

    Article  PubMed  CAS  Google Scholar 

  25. Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110

    Article  PubMed  CAS  Google Scholar 

  26. Glockzin S, Ogi FX, Hengstermann A, Scheffner M, Blattner C (2003) Involvement of the DNA repair protein hHR23 in p53 degradation. Mol Cell Biol 23:8960–8969

    Article  PubMed  CAS  Google Scholar 

  27. Brignone C, Bradley KE, Kisselev AF, Grossman SR (2004) A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway. Oncogene 23:4121–4129

    Article  PubMed  CAS  Google Scholar 

  28. Biggins S, Ivanovska I, Rose MD (1996) Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 133:1331–1346

    Article  PubMed  CAS  Google Scholar 

  29. Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci USA 99:745–750

    Article  PubMed  CAS  Google Scholar 

  30. Ko HS, Uehara T, Tsuruma K, Nomura Y (2004) Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 566:110–114

    Article  PubMed  CAS  Google Scholar 

  31. Massey LK, Mah AL, Ford DL, Miller J, Liang J, Doong H, Monteiro MJ (2004) Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. J Alzheimers Dis 6:79–92

    PubMed  CAS  Google Scholar 

  32. Tanaka K, Funakoshi M, Inoue K, Kobayashi H (2006) Identification of two isoforms of Dsk2-related protein XDRP1 in Xenopus eggs. Biochem Biophys Res Commun 350:768–773

    Article  PubMed  CAS  Google Scholar 

  33. Kleijnen MF, Shih AH, Zhou P, Kumar S, Soccio RE, Kedersha NL, Gill G, Howley PM (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409–419

    Article  PubMed  CAS  Google Scholar 

  34. Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, Kleifeld O, Gygi SP, Reis N, Glickman MH (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 32:415–425

    Article  PubMed  CAS  Google Scholar 

  35. Kleijnen MF, Alarcon RM, Howley PM (2003) The ubiquitin-associated domain of hPLIC-2 interacts with the proteasome. Mol Biol Cell 14:3868–3875

    Article  PubMed  CAS  Google Scholar 

  36. Tanaka K, Funakoshi M, Kobayashi H (2006) A Cdc2-sensitive interaction of the UbL domain of XDRP1S with cyclin B mediates the degradation of cyclin B in Xenopus egg extracts. Biochem Biophys Res Commun 350:774–782

    Article  PubMed  CAS  Google Scholar 

  37. Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ (2001) GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4:908–916

    Article  PubMed  CAS  Google Scholar 

  38. Saliba RS, Pangalos M, Moss SJ (2008) The ubiquitin-like protein Plic-1 enhances the membrane insertion of GABAA receptors by increasing their stability within the endoplasmic reticulum. J Biol Chem 283:18538–18544

    Article  PubMed  CAS  Google Scholar 

  39. Feng P, Scott CW, Cho NH, Nakamura H, Chung YH, Monteiro MJ, Jung JU (2004) Kaposi’s sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation. Mol Cell Biol 24:3938–3948

    Article  PubMed  CAS  Google Scholar 

  40. Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington’s disease by ubiquilin. Hum Mol Genet 15:1025–1041

    Article  PubMed  CAS  Google Scholar 

  41. Wang H, Monteiro MJ (2007) Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins. Biochem Biophys Res Commun 360:423–427

    Article  PubMed  CAS  Google Scholar 

  42. Mah AL, Perry G, Smith MA, Monteiro MJ (2000) Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J Cell Biol 151:847–862

    Article  PubMed  CAS  Google Scholar 

  43. Ford DL, Monteiro MJ (2007) Studies of the role of ubiquitination in the interaction of ubiquilin with the loop and carboxyl terminal regions of presenilin-2. Biochemistry 46:8827–8837

    Article  PubMed  CAS  Google Scholar 

  44. Gross GG, Feldman RM, Ganguly A, Wang J, Yu H, Guo M (2008) Role of X11 and ubiquilin as in vivo regulators of the amyloid precursor protein in Drosophila. PLoS ONE 3:e2495

    Article  PubMed  CAS  Google Scholar 

  45. Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, Raveh D (2005) The DNA damage-inducible UbL–UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol 25:5355–5362

    Article  PubMed  CAS  Google Scholar 

  46. Kaplun L, Ivantsiv Y, Bakhrat A, Tzirkin R, Baranes K, Shabek N, Raveh D (2006) The F-box protein, Ufo1, maintains genome stability by recruiting the yeast mating switch endonuclease, Ho, for rapid proteasome degradation. Isr Med Assoc J 8:246–248

    PubMed  CAS  Google Scholar 

  47. Saeki Y, Saitoh A, Toh-e A, Yokosawa H (2002) Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem Biophys Res Commun 293:986–992

    Article  PubMed  CAS  Google Scholar 

  48. Gabriely G, Kama R, Gelin-Licht R, Gerst JE (2008) Different domains of the UBL–UBA ubiquitin receptor, Ddi1/Vsm1, are involved in its multiple cellular roles. Mol Biol Cell 19:3625–3637

    Article  PubMed  CAS  Google Scholar 

  49. Ivantsiv Y, Kaplun L, Tzirkin-Goldin R, Shabek N, Raveh D (2006) Unique role for the UbL–UbA protein Ddi1 in turnover of SCFUfo1 complexes. Mol Cell Biol 26:1579–1588

    Article  PubMed  CAS  Google Scholar 

  50. Matsuda M, Koide T, Yorihuzi T, Hosokawa N, Nagata K (2001) Molecular cloning of a novel ubiquitin-like protein, UBIN, that binds to ER targeting signal sequences. Biochem Biophys Res Commun 280:535–540

    Article  PubMed  CAS  Google Scholar 

  51. Riley BE, Xu Y, Zoghbi HY, Orr HT (2004) The effects of the polyglutamine repeat protein ataxin-1 on the UbL–UBA protein A1Up. J Biol Chem 279:42290–42301

    Article  PubMed  CAS  Google Scholar 

  52. Davidson JD, Riley B, Burright EN, Duvick LA, Zoghbi HY, Orr HT (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum Mol Genet 9:2305–2312

    PubMed  CAS  Google Scholar 

  53. Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, Yoshida M, Nakayama K, Nakayama KI (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6:1229–1235

    Article  PubMed  CAS  Google Scholar 

  54. Hara T, Kamura T, Kotoshiba S, Takahashi H, Fujiwara K, Onoyama I, Shirakawa M, Mizushima N, Nakayama KI (2005) Role of the UBL–UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol Cell Biol 25:9292–9303

    Article  PubMed  CAS  Google Scholar 

  55. Kamitani T, Kito K, Fukuda-Kamitani T, Yeh ET (2001) Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J Biol Chem 276:46655–46660

    Article  PubMed  CAS  Google Scholar 

  56. Kito K, Yeh ET, Kamitani T (2001) NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression. J Biol Chem 276:20603–20609

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka T, Kawashima H, Yeh ET, Kamitani T (2003) Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J Biol Chem 278:32905–32913

    Article  PubMed  CAS  Google Scholar 

  58. Hipp MS, Raasi S, Groettrup M, Schmidtke G (2004) NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J Biol Chem 279:16503–16510

    Article  PubMed  CAS  Google Scholar 

  59. Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, Hipp MS, Groettrup M (2006) The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J Biol Chem 281:20045–20054

    Article  PubMed  CAS  Google Scholar 

  60. Tanji K, Tanaka T, Kamitani T (2005) Interaction of NUB1 with the proteasome subunit S5a. Biochem Biophys Res Commun 337:116–120

    Article  PubMed  CAS  Google Scholar 

  61. Walters KJ, Kleijnen MF, Goh AM, Wagner G, Howley PM (2002) Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41:1767–1777

    Article  PubMed  CAS  Google Scholar 

  62. Mueller TD, Feigon J (2003) Structural determinants for the binding of ubiquitin-like domains to the proteasome. EMBO J 22:4634–4645

    Article  PubMed  CAS  Google Scholar 

  63. Walters KJ, Goh AM, Wang Q, Wagner G, Howley PM (2004) Ubiquitin family proteins and their relationship to the proteasome: a structural perspective. Biochim Biophys Acta 1695:73–87

    Article  PubMed  CAS  Google Scholar 

  64. Mueller TD, Feigon J (2002) Solution structures of UBA domains reveal a conserved hydrophobic surface for protein–protein interactions. J Mol Biol 319:1243–1255

    Article  PubMed  CAS  Google Scholar 

  65. Sasaki T, Funakoshi M, Endicott JA, Kobayashi H (2005) Budding yeast Dsk2 protein forms a homodimer via its C-terminal UBA domain. Biochem Biophys Res Commun 336:530–535

    Article  PubMed  CAS  Google Scholar 

  66. Zhang D, Raasi S, Fushman D (2008) Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J Mol Biol 377:162–180

    Article  PubMed  CAS  Google Scholar 

  67. Mueller TD, Kamionka M, Feigon J (2004) Specificity of the interaction between ubiquitin-associated domains and ubiquitin. J Biol Chem 279:11926–11936

    Article  PubMed  CAS  Google Scholar 

  68. Kang Y, Vossler RA, Diaz-Martinez LA, Winter NS, Clarke DJ, Walters KJ (2006) UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J Mol Biol 356:1027–1035

    Article  PubMed  CAS  Google Scholar 

  69. Ryu KS, Lee KJ, Bae SH, Kim BK, Kim KA, Choi BS (2003) Binding surface mapping of intra- and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a. J Biol Chem 278:36621–36627

    Article  PubMed  CAS  Google Scholar 

  70. Wang Q, Goh AM, Howley PM, Walters KJ (2003) Ubiquitin recognition by the DNA repair protein hHR23a. Biochemistry 42:13529–13535

    Article  PubMed  CAS  Google Scholar 

  71. Raasi S, Varadan R, Fushman D, Pickart CM (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12:708–714

    Article  PubMed  CAS  Google Scholar 

  72. Raasi S, Orlov I, Fleming KG, Pickart CM (2004) Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J Mol Biol 341:1367–1379

    Article  PubMed  CAS  Google Scholar 

  73. Lowe ED, Hasan N, Trempe JF, Fonso L, Noble ME, Endicott JA, Johnson LN, Brown NR (2006) Structures of the Dsk2 UBL and UBA domains and their complex. Acta Crystallogr D Biol Crystallogr 62:177–188

    Article  PubMed  CAS  Google Scholar 

  74. Bertolaet BL, Clarke DJ, Wolff M, Watson MH, Henze M, Divita G, Reed SI (2001) UBA domains mediate protein–protein interactions between two DNA damage-inducible proteins. J Mol Biol 313:955–963

    Article  PubMed  CAS  Google Scholar 

  75. Ford DL, Monteiro MJ (2006) Dimerization of ubiquilin is dependent upon the central region of the protein: evidence that the monomer, but not the dimer, is involved in binding presenilins. Biochem J 399:397–404

    Article  PubMed  CAS  Google Scholar 

  76. Sirkis R, Gerst JE, Fass D (2006) Ddi1, a eukaryotic protein with the retroviral protease fold. J Mol Biol 364:376–387

    Article  PubMed  CAS  Google Scholar 

  77. Kang Y, Zhang N, Koepp DM, Walters KJ (2007) Ubiquitin receptor proteins hHR23a and hPLIC2 interact. J Mol Biol 365:1093–1101

    Article  PubMed  CAS  Google Scholar 

  78. Moscat J, Diaz-Meco MT, Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32:95–100

    Article  PubMed  CAS  Google Scholar 

  79. Seibenhener ML, Geetha T, Wooten MW (2007) Sequestosome 1/p62—more than just a scaffold. FEBS Lett 581:175–179

    Article  PubMed  CAS  Google Scholar 

  80. Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  PubMed  CAS  Google Scholar 

  81. Hirano Y, Yoshinaga S, Ogura K, Yokochi M, Noda Y, Sumimoto H, Inagaki F (2004) Solution structure of atypical protein kinase C PB1 domain and its mode of interaction with ZIP/p62 and MEK5. J Biol Chem 279:31883–31890

    Article  PubMed  CAS  Google Scholar 

  82. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068

    Article  PubMed  CAS  Google Scholar 

  83. Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94:192–203

    Article  PubMed  CAS  Google Scholar 

  84. Geetha T, Seibenhener ML, Chen L, Madura K, Wooten MW (2008) p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun 374:33–37

    Article  PubMed  CAS  Google Scholar 

  85. Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J (2008) Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem 283:6783–6789

    Article  PubMed  CAS  Google Scholar 

  86. Ishii T, Funakoshi M, Kobayashi H (2006) Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin–proteasome pathway. EMBO J 25:5492–5503

    Article  PubMed  CAS  Google Scholar 

  87. Lambertson D, Chen L, Madura K (2003) Investigating the importance of proteasome-interaction for Rad23 function. Curr Genet 42:199–208

    PubMed  CAS  Google Scholar 

  88. Fujiwara K, Tenno T, Sugasawa K, Jee JG, Ohki I, Kojima C, Tochio H, Hiroaki H, Hanaoka F, Shirakawa M (2004) Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J Biol Chem 279:4760–4767

    Article  PubMed  CAS  Google Scholar 

  89. Goh AM, Walters KJ, Elsasser S, Verma R, Deshaies RJ, Finley D, Howley PM (2008) Components of the ubiquitin–proteasome pathway compete for surfaces on Rad23 family proteins. BMC Biochem 9:4

    Article  PubMed  CAS  Google Scholar 

  90. Ghaboosi N, Deshaies RJ (2007) A conditional yeast E1 mutant blocks the ubiquitin–proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. Mol Biol Cell 18:1953–1963

    Article  PubMed  CAS  Google Scholar 

  91. Medicherla B, Kostova Z, Schaefer A, Wolf DH (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5:692–697

    Article  PubMed  CAS  Google Scholar 

  92. Park H, Suzuki T, Lennarz WJ (2001) Identification of proteins that interact with mammalian peptide:N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci USA 98:11163–11168

    Article  PubMed  CAS  Google Scholar 

  93. Suzuki T, Park H, Kwofie MA, Lennarz WJ (2001) Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J Biol Chem 276:21601–21607

    Article  PubMed  CAS  Google Scholar 

  94. Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ (2000) PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J Cell Biol 149:1039–1052

    Article  PubMed  CAS  Google Scholar 

  95. Suzuki T, Park H, Kitajima K, Lennarz WJ (1998) Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity. J Biol Chem 273:21526–21530

    Article  PubMed  CAS  Google Scholar 

  96. Ko HS, Uehara T, Nomura Y (2002) Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem 277:35386–35392

    Article  PubMed  CAS  Google Scholar 

  97. Lu A, Hiltunen M, Romano DM, Soininen H, Hyman BT, Bertram L, Tanzi RE (2009) Effects of ubiquilin 1 on the unfolded protein response. J Mol Neurosci 38:19–30

    Article  PubMed  CAS  Google Scholar 

  98. Kim TY, Kim E, Yoon SK, Yoon JB (2008) Herp enhances ER-associated protein degradation by recruiting ubiquilins. Biochem Biophys Res Commun 369:741–746

    Article  PubMed  CAS  Google Scholar 

  99. Kokame K, Agarwala KL, Kato H, Miyata T (2000) Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem 275:32846–32853

    Article  PubMed  CAS  Google Scholar 

  100. Kelly SM, Vanslyke JK, Musil LS (2007) Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress. Mol Biol Cell 18:4279–4291

    Article  PubMed  CAS  Google Scholar 

  101. VanSlyke JK, Deschenes SM, Musil LS (2000) Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11:1933–1946

    PubMed  CAS  Google Scholar 

  102. VanSlyke JK, Musil LS (2002) Dislocation and degradation from the ER are regulated by cytosolic stress. J Cell Biol 157:381–394

    Article  PubMed  CAS  Google Scholar 

  103. Musil LS, Le AC, VanSlyke JK, Roberts LM (2000) Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J Biol Chem 275:25207–25215

    Article  PubMed  CAS  Google Scholar 

  104. Dieckmann T, Withers-Ward ES, Jarosinski MA, Liu CF, Chen IS, Feigon J (1998) Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nat Struct Biol 5:1042–1047

    Article  PubMed  CAS  Google Scholar 

  105. Wang G, Sawai N, Kotliarova S, Kanazawa I, Nukina N (2000) Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet 9:1795–1803

    Article  PubMed  CAS  Google Scholar 

  106. Regan-Klapisz E, Sorokina I, Voortman J, de Keizer P, Roovers RC, Verheesen P, Urbe S, Fallon L, Fon EA, Verkleij A, Benmerah A, van Bergen en Henegouwen PM (2005) Ubiquilin recruits Eps15 into ubiquitin-rich cytoplasmic aggregates via a UIM-UBL interaction. J Cell Sci 118:4437–4450

    Article  PubMed  CAS  Google Scholar 

  107. Heir R, Ablasou C, Dumontier E, Elliott M, Fagotto-Kaufmann C, Bedford FK (2006) The UBL domain of PLIC-1 regulates aggresome formation. EMBO Rep 7:1252–1258

    Article  PubMed  CAS  Google Scholar 

  108. N’Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ (2009) PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 10:173–179

    Article  PubMed  Google Scholar 

  109. Kim SH, Shi Y, Hanson KA, Williams LM, Sakasai R, Bowler MJ, Tibbetts RS (2009) Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem 284:8083–8092

    Article  PubMed  CAS  Google Scholar 

  110. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  CAS  Google Scholar 

  111. N’Diaye EN, Hanyaloglu AC, Kajihara KK, Puthenveedu MA, Wu P, von Zastrow M, Brown EJ (2008) The ubiquitin-like protein PLIC-2 is a negative regulator of G protein-coupled receptor endocytosis. Mol Biol Cell 19:1252–1260

    Article  PubMed  CAS  Google Scholar 

  112. Wu S, Mikhailov A, Kallo-Hosein H, Hara K, Yonezawa K, Avruch J (2002) Characterization of ubiquilin 1, an mTOR-interacting protein. Biochim Biophys Acta 1542:41–56

    Article  PubMed  CAS  Google Scholar 

  113. Diaz-Martinez LA, Kang Y, Walters KJ, Clarke DJ (2006) Yeast UBL–UBA proteins have partially redundant functions in cell cycle control. Cell Div 1:28

    Article  PubMed  CAS  Google Scholar 

  114. Auesukaree C, Fuchigami I, Homma T, Kaneko Y, Harashima S (2008) Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun 365:821–825

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mervyn Monteiro for helpful comments on the manuscript. Work by V.S. and A.F.L. is supported by grant CA052098 from the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, V., Lau, A.F. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell. Mol. Life Sci. 66, 2819–2833 (2009). https://doi.org/10.1007/s00018-009-0048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0048-9

Keywords

Navigation