Skip to main content

Advertisement

Log in

Esophageal cancer-related gene-4 (ECRG4) interactions with the innate immunity receptor complex

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The human c2orf40 gene encodes a tumor suppressor gene called esophageal cancer-related gene-4 (ECRG4) with pro- and anti-inflammatory activities that depend on cell surface processing. Here, we investigated its physical and functional association with the innate immunity receptor complex.

Methods

Interactions between ECRG4 and the innate immunity receptor complex were assessed by flow cytometry, immunohistochemistry, confocal microscopy, and co-immunoprecipitation. Phage display was used for ligand targeting to cells that overexpress the TLR4–MD2–CD14.

Results

Immunoprecipitation and immunohistochemical studies demonstrate a physical interaction between ECRG4 and TLR4–MD2–CD14 on human granulocytes. Flow cytometry shows ECRG4 on the cell surface of a subset of CD14+ and CD16+ leukocytes. In a cohort of trauma patients, the C-terminal 16 amino acid domain of ECRG4 (ECRG4133–148) appears to be processed and shed, presumably at a thrombin-like consensus sequence. Phage targeting this putative ligand shows that this peptide sequence internalizes into cells through the TLR4/CD14/MD2 complex, but modulates inflammation through non-canonical, NFκB signal transduction.

Conclusions

ECRG4 is present on the surface of human monocytes and granulocytes. Its interaction with the human innate immunity receptor complex supports a role for cell surface activation of ECRG4 during inflammation and implicates this receptor in its mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, et al. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007;17(3):320–7. doi:10.1101/gr.5755407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ozawa A, Lick AN, Lindberg I. Processing of proaugurin is required to suppress proliferation of tumor cell lines. Mol Endocrinol. 2011;25(5):776–84. doi:10.1210/me.2010-0389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dang X, Podvin S, Coimbra R, Eliceiri B, Baird A. Cell-specific processing and release of the hormone-like precursor and candidate tumor suppressor gene product, Ecrg4. Cell Tissue Res. 2012;348(3):505–14. doi:10.1007/s00441-012-1396-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Podvin S, Gonzalez AM, Miller MC, Dang X, Botfield H, Donahue JE, et al. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS One. 2011;6(9):e24609. doi:10.1371/journal.pone.0024609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Baird A, Coimbra R, Dang X, Lopez N, Lee J, Krzyzaniak M, et al. Cell surface localization and release of the candidate tumor suppressor Ecrg4 from polymorphonuclear cells and monocytes activate macrophages. J Leukoc Biol. 2012;91(5):773–81. doi:10.1189/jlb.1011503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Su T, Liu H, Lu S. Cloning and identification of cDNA fragments related to human esophageal cancer. Zhonghua Zhong Liu Za Zhi. 1998;20(4):254–7.

    CAS  PubMed  Google Scholar 

  7. Matsuzaki J, Torigoe T, Hirohashi Y, Tamura Y, Asanuma H, Nakazawa E, et al. Expression of ECRG4 is associated with lower proliferative potential of esophageal cancer cells. Pathol Int. 2013;63(8):391–7. doi:10.1111/pin.12079.

    Article  CAS  PubMed  Google Scholar 

  8. Mori Y, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, et al. Expression of ECRG4 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep. 2007;18(4):981–5.

    CAS  PubMed  Google Scholar 

  9. Yue CM, Deng DJ, Bi MX, Guo LP, Lu SH. Expression of ECRG4, a novel esophageal cancer-related gene, downregulated by CpG island hypermethylation in human esophageal squamous cell carcinoma. World J Gastroenterol. 2003;9(6):1174–8.

    CAS  PubMed  Google Scholar 

  10. Wang YB, Ba CF. Promoter methylation of esophageal cancer-related gene 4 in gastric cancer tissue and its clinical significance. Hepatogastroenterology. 2012;59(118):1696–8. doi:10.5754/hge12258.

    CAS  PubMed  Google Scholar 

  11. Li W, Liu X, Zhang B, Qi D, Zhang L, Jin Y, et al. Overexpression of candidate tumor suppressor ECRG4 inhibits Gliomas proliferation and invasion. J Exp Clin Cancer Res. 2010;29(1):89. doi:10.1186/1756-9966-29-89.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Vanaja DK, Ehrich M, Van den Boom D, Cheville JC, Karnes RJ, Tindall DJ, et al. Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest. 2009;27(5):549–60. doi:10.1080/07357900802620794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee J, Dang X, Borboa A, Coimbra R, Baird A, Eliceiri BP. Thrombin-processed Ecrg4 recruits myeloid cells and induces antitumorigenic inflammation. Neuro Oncol. 2014. doi:10.1093/neuonc/nou302.

  14. Baird A, Lee J, Podvin S, Kurabi A, Dang X, Coimbra R et al. Esophageal-Cancer-Related Gene-4 (ECRG4) at the Interface of Injury, Inflammation, Infection and Malignancy. Gastrointestinal Cancer: Targets and Therapy. 2014;4:131–42.

    Article  CAS  Google Scholar 

  15. Huh YH, Ryu JH, Shin S, Lee DU, Yang S, Oh KS, et al. Esophageal cancer related gene 4 (ECRG4) is a marker of articular chondrocyte differentiation and cartilage destruction. Gene. 2009;448(1):7–15. doi:10.1016/j.gene.2009.08.015.

    Article  CAS  PubMed  Google Scholar 

  16. Kujuro Y, Suzuki N, Kondo T. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proc Natl Acad Sci USA. 2010;107(18):8259–64. doi:10.1073/pnas.0911446107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kurabi A, Pak K, Dang X, Coimbra R, Eliceiri BP, Ryan AF, et al. Ecrg4 attenuates the inflammatory proliferative response of mucosal epithelial cells to infection. PLoS One. 2013;8(4):e61394. doi:10.1371/journal.pone.0061394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Shaterian A, Kao S, Chen L, DiPietro LA, Coimbra R, Eliceiri BP, et al. The candidate tumor suppressor gene Ecrg4 as a wound terminating factor in cutaneous injury. Arch Dermatol Res. 2013;305(2):141–9. doi:10.1007/s00403-012-1276-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gonzalez AM, Podvin S, Lin SY, Miller MC, Botfield H, Leadbeater WE, et al. Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS. 2011;8(1):6. doi:10.1186/2045-8118-8-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li LW, Yu XY, Yang Y, Zhang CP, Guo LP, Lu SH. Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer. 2009;125(7):1505–13. doi:10.1002/ijc.24513.

    Article  CAS  PubMed  Google Scholar 

  21. Sabatier R, Finetti P, Adelaide J, Guille A, Borg JP, Chaffanet M, et al. Down-regulation of ECRG4, a candidate tumor suppressor gene, in human breast cancer. PLoS One. 2011;6(11):e27656. doi:10.1371/journal.pone.0027656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Xu T, Xiao D, Zhang X. ECRG4 inhibits growth and invasiveness of squamous cell carcinoma of the head and neck and. Oncol Lett. 2013;5(6):1921–6. doi:10.3892/ol.2013.1298.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Balistreri CR, Colonna-Romano G, Lio D, Candore G, Caruso C. TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J Clin Immunol. 2009;29(4):406–15. doi:10.1007/s10875-009-9297-5.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang K, Zhou B, Wang Y, Rao L, Zhang L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer. 2013;49(4):946–54. doi:10.1016/j.ejca.2012.09.022.

    Article  CAS  PubMed  Google Scholar 

  25. Wolska A, Lech-Maranda E, Robak T. Toll-like receptors and their role in carcinogenesis and anti-tumor treatment. Cell Mol Biol Lett. 2009;14(2):248–72. doi:10.2478/s11658-008-0048-z.

    Article  CAS  PubMed  Google Scholar 

  26. Koller B, Bals R, Roos D, Korting HC, Griese M, Hartl D. Innate immune receptors on neutrophils and their role in chronic lung disease. Eur J Clin Invest. 2009;39(7):535–47. doi:10.1111/j.1365-2362.2009.02145.x.

    Article  CAS  PubMed  Google Scholar 

  27. Rallabhandi P, Bell J, Boukhvalova MS, Medvedev A, Lorenz E, Arditi M, et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol. 2006;177(1):322–32.

    Article  CAS  PubMed  Google Scholar 

  28. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005;65(12):5009–14. doi:10.1158/0008-5472.can-05-0784.

    Article  CAS  PubMed  Google Scholar 

  29. Hua D, Liu MY, Cheng ZD, Qin XJ, Zhang HM, Chen Y, et al. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol Immunol. 2009;46(15):2876–84. doi:10.1016/j.molimm.2009.06.016.

    Article  CAS  PubMed  Google Scholar 

  30. Larocca D, Burg MA, Jensen-Pergakes K, Ravey EP, Gonzalez AM, Baird A. Evolving phage vectors for cell targeted gene delivery. Curr Pharm Biotechnol. 2002;3(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  31. Holtta M, Zetterberg H, Mirgorodskaya E, Mattsson N, Blennow K, Gobom J. Peptidome analysis of cerebrospinal fluid by LC-MALDI MS. PLoS One. 2012;7(8):e42555. doi:10.1371/journal.pone.0042555.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chank C, DM H, C S. Clinical proteomics analysis of the human serum proteome. NCI Large Human Serum Survey. 2012.

  33. Calvano JE, Agnese DM, Um JY, Goshima M, Singhal R, Coyle SM, et al. Modulation of the lipopolysaccharide receptor complex (CD14, TLR4, MD-2) and toll-like receptor 2 in systemic inflammatory response syndrome-positive patients with and without infection: relationship to tolerance. Shock. 2003;20(5):415–9. doi:10.1097/01.shk.0000092269.01859.44.

    Article  CAS  PubMed  Google Scholar 

  34. Antal-Szalmas P, Strijp JA, Weersink AJ, Verhoef J, Van Kessel KP. Quantitation of surface CD14 on human monocytes and neutrophils. J Leukoc Biol. 1997;61(6):721–8.

    CAS  PubMed  Google Scholar 

  35. Burg MA, Jensen-Pergakes K, Gonzalez AM, Ravey P, Baird A, Larocca D. Enhanced phagemid particle gene transfer in camptothecin-treated carcinoma cells. Cancer Res. 2002;62(4):977–81.

    CAS  PubMed  Google Scholar 

  36. Larocca D, Jensen-Pergakes K, Burg MA, Baird A. Gene transfer using targeted filamentous bacteriophage. Methods Mol Biol. 2002;185:393–401.

    CAS  PubMed  Google Scholar 

  37. Larocca D, Jensen-Pergakes K, Burg MA, Baird A. Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther. 2001;3(4):476–84. doi:10.1006/mthe.2001.0284.

    Article  CAS  PubMed  Google Scholar 

  38. Satta N, Kruithof EK, Fickentscher C, Dunoyer-Geindre S, Boehlen F, Reber G, et al. Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood. 2011;117(20):5523–31. doi:10.1182/blood-2010-11-316158.

    Article  CAS  PubMed  Google Scholar 

  39. Naka T, Nakata N, Maeda S, Yamamoto R, Doe M, Mizuno S, et al. Structure and host recognition of serotype 13 glycopeptidolipid from Mycobacterium intracellulare. J Bacteriol. 2011;193(20):5766–74. doi:10.1128/jb.05412-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187(5):2626–31. doi:10.4049/jimmunol.1003930.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yang H, Young DW, Gusovsky F, Chow JC. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J Biol Chem. 2000;275(27):20861–6. doi:10.1074/jbc.M002896200.

    Article  CAS  PubMed  Google Scholar 

  42. Espevik T, Latz E, Lien E, Monks B, Golenbock DT. Cell distributions and functions of Toll-like receptor 4 studied by fluorescent gene constructs. Scand J Infect Dis. 2003;35(9):660–4.

    Article  CAS  PubMed  Google Scholar 

  43. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274(16):10689–92.

    Article  CAS  PubMed  Google Scholar 

  44. Kramer HK, Onoprishvili I, Andria ML, Hanna K, Sheinkman K, Haddad LB, et al. Delta opioid activation of the mitogen-activated protein kinase cascade does not require transphosphorylation of receptor tyrosine kinases. BMC Pharmacol. 2002;2:5.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ. Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol. 2006;206(1):47–57. doi:10.1002/jcp.20423.

    Article  CAS  PubMed  Google Scholar 

  46. Derrien A, Druey KM. RGS16 function is regulated by epidermal growth factor receptor-mediated tyrosine phosphorylation. J Biol Chem. 2001;276(51):48532–8. doi:10.1074/jbc.M108862200.

    CAS  PubMed  Google Scholar 

  47. Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 2009;114(21):4613–23. doi:10.1182/blood-2009-06-221630.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010;10(11):1325–34. doi:10.1016/j.intimp.2010.08.012.

    Article  CAS  PubMed  Google Scholar 

  49. Lederer JA, Brownstein BH, Lopez MC, Macmillan S, Delisle AJ, Macconmara MP, et al. Comparison of longitudinal leukocyte gene expression after burn injury or trauma-hemorrhage in mice. Physiol Genomics. 2008;32(3):299–310. doi:10.1152/physiolgenomics.00086.2007.

    Article  CAS  PubMed  Google Scholar 

  50. Pillay J, Ramakers BP, Kamp VM, Loi AL, Lam SW, Hietbrink F, et al. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J Leukoc Biol. 2010;88(1):211–20. doi:10.1189/jlb.1209793.

    Article  CAS  PubMed  Google Scholar 

  51. Kopydlowski KM, Salkowski CA, Cody MJ, van Rooijen N, Major J, Hamilton TA, et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol. 1999;163(3):1537–44.

    CAS  PubMed  Google Scholar 

  52. Romero CD, Varma TK, Hobbs JB, Reyes A, Driver B, Sherwood ER. The Toll-like receptor 4 agonist monophosphoryl lipid a augments innate host resistance to systemic bacterial infection. Infect Immun. 2011;79(9):3576–87. doi:10.1128/iai.00022-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  54. Xia Y, Yamagata K, Krukoff TL. Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res. 2006;1095(1):85–95. doi:10.1016/j.brainres.2006.03.112.

    Article  CAS  PubMed  Google Scholar 

  55. Ye Y, Xu H, Zhang X, Li Z, Jia Y, He X, et al. Association between toll-like receptor 4 expression and neural stem cell proliferation in the hippocampus 25 following traumatic brain injury in mice. Int J Mol Sci. 2014;15(7):12651–64. doi:10.3390/ijms150712651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chakravarty S, Herkenham M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci. 2005;25(7):1788–96. doi:10.1523/jneurosci.4268-04.2005.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Hori K, Ding J, Huang Y, Kwan P, Ladak A, et al. Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol. 2011;226(5):1265–73. doi:10.1002/jcp.22454.

    Article  CAS  PubMed  Google Scholar 

  58. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179–90. doi:10.1038/nri2038.

    Article  CAS  PubMed  Google Scholar 

  59. Fu Y, Glaros T, Zhu M, Wang P, Wu Z, Tyson JJ, et al. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells. PLoS Comput Biol. 2012;8(5):e1002526. doi:10.1371/journal.pcbi.1002526.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Glezer I, Lapointe A, Rivest S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J. 2006;20(6):750–2. doi:10.1096/fj.05-5234fje.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Tran Nguyen, Emelie Amburn and Alexandra Ortiz-Borboa for expert technical assistance. Research was supported by a Mentored Young Investigator Award from the Hydrocephalus Association (S.P.), the National Institutes of Health through a P20 Exploratory Center grant for Wound Healing Research from the NIGMS (P20-GM078421) to A.B. and from grants EY018479 (A.B.), DK085871 (A.B.) and HL73396 (B.P.E.) and supplemental funding by the National Eye Institute (NEI) and NIGMS through the American Recovery Act (ARRA). Studies with human blood were funded by a grant from the American Burn Association (RC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Baird.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podvin, S., Dang, X., Meads, M. et al. Esophageal cancer-related gene-4 (ECRG4) interactions with the innate immunity receptor complex. Inflamm. Res. 64, 107–118 (2015). https://doi.org/10.1007/s00011-014-0789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0789-2

Keywords

Navigation