Skip to main content

Advertisement

Log in

Effect of 15-lipoxygenase metabolites on angiogenesis: 15(S)-HPETE is angiostatic and 15(S)-HETE is angiogenic

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] are the products of arachidonic acid formed in the 15-lipoxygenase pathway. They have opposing effects on the inflammatory process. The present study was designed to examine the role of these metabolites on angiogenesis, which is critically associated with inflammatory conditions.

Methods

Chick chorio-allantoic membrane (CAM), rat aortic rings and human umbilical vein endothelial cells (HUVECs) in culture were used to study the effect of 15(S)-HETE and 15(S)-HPETE on angiogenesis. Biochemical markers of angiogenesis were analysed by ELISA.

Results

15(S)-HETE increased vessel density in chick CAM, induced sprouting in rat aortic rings and increased endothelial cell–cell contact and formation of tubular network-like structures in HUVECs. Furthermore, it up-regulated the expression of CD31, E-selectin and vascular endothelial growth factor (VEGF) in HUVECs, indicating its pro-angiogenic effect. 15(S)-HPETE, on the other hand, decreased vessel density in chick CAM, down-regulated the expression of E-selectin (<35 %), VEGF (<90 %) and CD31 (<50 %) and did not produce sprouting in aortic rings, suggesting an anti-angiogenic property. 15(S)-HETE-mediated up-regulation of CD 31 and VEGF was reversed by treatment with 15(S)-HPETE.

Conclusion

These results indicate the divergent effects of hydroxy and hydroperoxy products of 15-LOX on angiogenesis, highlighting the role of these products in the co-dependence of inflammation and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Naldini A, Carraro F. Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy. 2005;4:3–8.

    Article  PubMed  CAS  Google Scholar 

  2. Barbara W, Peter G. Adhesion molecules: the path to a new understanding of acute inflammation. Physiol Sci. 2000;15:107–13.

    Google Scholar 

  3. William AM. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest. 2002;82:521–33.

    Article  Google Scholar 

  4. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121:2373–80.

    Article  PubMed  CAS  Google Scholar 

  5. Joanna MK, Grietje M. Molecular pathways of endothelial cell activation for (targeted) pharmacological intervention of chronic inflammatory diseases. Curr Vasc Pharmacol. 2005;3:11–39.

    Article  Google Scholar 

  6. David AW, Claire IP. Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res. 2001;3:147–53.

    Article  Google Scholar 

  7. Peter C. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  Google Scholar 

  8. Nikolaos MS, Eleni GT. Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007;2:453–62.

    Google Scholar 

  9. Jeffrey RJ, James DW. The codependence of angiogenesis and chronic inflammation. FASEB J. 1997;11:457–65.

    Google Scholar 

  10. Bharat BA, Gautam S. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72:1605–21.

    Article  Google Scholar 

  11. Nie D, Honn KV. Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cell Mol Life Sci. 2002;59:799–807.

    Article  PubMed  CAS  Google Scholar 

  12. Xian ZD, Thomas EA. Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Mol Cancer. 2003;2:10.

    Article  Google Scholar 

  13. Yamaja SBN, Marie JS. Effects of changes in oxygen tension on vascular and platelet hydroxyacid metabolites. II. Hypoxia increases 15-hydroxyeicosatetraenoic acid, a proangiogenic metabolite. Pediatrics. 1985;75:911–5.

    Google Scholar 

  14. Tang Y, Nie D. Downregulation of vascular endothelial growth factor and induction of tumor dormancy by 15-lipoxygenase-2 in prostate cancer. Int J Cancer. 2009;124:1545–51.

    Article  PubMed  CAS  Google Scholar 

  15. Scott BS, Alan RB. 15-lipoxygenase -2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol. 1999;155:235–45.

    Article  Google Scholar 

  16. Reddy R, Reddanna P, Curtis WR. 11-Hydroperoxyeicosatetraenoic acid is the major dioxygenation product of lipoxygenase isolated from hairy root cultures of Solanum tuberosum. Biochem Biophys Res Commun. 1992;189:1349–52.

    Article  PubMed  CAS  Google Scholar 

  17. Nicossia RF, Ottinetti A. Growth of microvessels in serum- free matrix culture of rat aorta: a quantitative assay of angiogenesis in vitro. Lab Invest. 1990;63:115–22.

    Google Scholar 

  18. Kumar VB, Sudhakaran PR. Endothelial cell response to lactate: implications of PAR modification of VEGF. J Cell Physiol. 2007;211:477–85.

    Article  PubMed  CAS  Google Scholar 

  19. Ribatti AD, Basataki M. New model for the study of angiogenesis–antiangiogenesis in the chick embryo chorio allantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res. 1997;34:455–63.

    Article  PubMed  CAS  Google Scholar 

  20. Jaffe EA, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745–56.

    Article  PubMed  CAS  Google Scholar 

  21. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA): quantitative assay of immunoglobulin G. Immunochemistry. 1971;8:871–4.

    Article  PubMed  CAS  Google Scholar 

  22. Kalyan S, Rao GN. 15(S)-Hydroxyeicosatetraenoic acid-induced angiogenesis requires STAT3-dependent expression of VEGF. Cancer Res. 2007;67:4328–36.

    Article  Google Scholar 

  23. Venkatesh KS, Rao GN. 15(S)-Hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression. Blood. 2010;115:2105–16.

    Article  Google Scholar 

  24. Baolin Z, Rao GN. 15(S)-Hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3 K-Akt-mTOR-S6K1 signaling. Cancer Res. 2005;65:7283–91.

    Article  Google Scholar 

  25. Song G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9:59–71.

    Article  PubMed  CAS  Google Scholar 

  26. Lorraine MS, Isis KM. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells. Prostaglandins Other Lipid Mediat. 2005;76:19–34.

    Article  Google Scholar 

  27. Mahipal SV, Reddanna P. Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis. Biochem Pharmacol. 2007;74:202–14.

    Article  PubMed  CAS  Google Scholar 

  28. Kiran KYV, Reddanna P. Differential effects of 15-HPETE and 15-HETE on BHK-21 cell proliferation and macromolecular composition. Biochem Biophys Acta. 1993;1167:102–8.

    Google Scholar 

  29. Anil KK, Reddanna P. 15-(S)-HPETE and 15-(S)-HETE effects on acute lymphoblastic leukemia cell line-Jurkat: Activation of Fas mediated death pathway. Biotechnol Appl Biochem. 2007;52:121–33.

    Google Scholar 

  30. Viji RI, Sudhakaran PR. Moduation of cyclooxygenase in endothelial cells by fibronectin: relevance to angiogenesis. J Cell Biol. 2008;105:158–66.

    CAS  Google Scholar 

  31. Kumar VB, Sudhakaran PR. Angiogenic effect of laminin involves modulation of cyclooxygenase-2 and prostaglandin levels. Exp Biol Med. 2011;236:44–51.

    Article  CAS  Google Scholar 

  32. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  33. Cesar GR, Andres R. Angiogenesis and ovarian cancer. Clin Transl Oncol. 2009;11:564–71.

    Article  Google Scholar 

  34. Sung HC, Timothy H. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. PNAS. 2004;101:591–6.

    Article  Google Scholar 

  35. Yiping J, Reza D. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Invest Ophthalmol Vis Sci. 2009;50:4743–52.

    Article  Google Scholar 

Download references

Acknowledgments

Financial assistance to Soumya S. J. and Binu S. in the form of JRF from University Grants Commission (UGC) under Research Fellowship in Sciences for Meritorious Students (RFSMS) scheme, New Delhi and Kerala State Council for Science, Technology and Environment (KSCSTE), Thiruvananthapuram and CSIR PDF to Dr. Anil Kumar K. is gratefully acknowledged. We greatly acknowledge the doctors and nursing staffs of Gowreesha Hospital and Anadiyil Hospital for the help received in obtaining umbilical cord for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumana R. Sudhakaran.

Additional information

Responsible Editor: Makoto Katori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soumya, S.J., Binu, S., Helen, A. et al. Effect of 15-lipoxygenase metabolites on angiogenesis: 15(S)-HPETE is angiostatic and 15(S)-HETE is angiogenic. Inflamm. Res. 61, 707–718 (2012). https://doi.org/10.1007/s00011-012-0463-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0463-5

Keywords

Navigation