Skip to main content
Log in

The Hyperbolic Spinor Representation of Transformations in \(\mathbb {R}_1^3\) by Means of Split Quaternions

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this study, firstly, we give a different approach to the relationship between the split quaternions and rotations in Minkowski space \(\mathbb {R}_1^3\). In addition, we obtain an automorphism of the split quaternion algebra \(H'\) corresponding to a rotation in \(\mathbb {R}_1^3\). Then, we give the relationship between the hyperbolic spinors and rotations in \(\mathbb {R}_1^3\). Finally, we associate to a split quaternion with a hyperbolic spinor by means of a transformation. In this way, we show that the rotation of a rigid body in the Minkowski 3-space \(\mathbb {R}_1^3\) expressed the split quaternions can be written by means of the hyperbolic spinors with two hyperbolic components. So, we obtain a new and short representation (hyperbolic spinor representation) of transformation in the 3-dimensional Minkowski space \(\mathbb {R}_1^3\) expressed by means of split quaternions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonuccio, F.: Hyperbolic Numbers and the Dirac Spinor (1998). arXiv:hep-th/9812036v1

  2. Balci, Y., Erisir, T., Gungor, M.A.: Hyperbolic spinor Darboux equations of spacelike curves in Minkowski 3-space. J. Chungcheong Math. Soc. 28(4), 525–535 (2015)

    Article  Google Scholar 

  3. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geomerty. Academic Press, London (1975)

    MATH  Google Scholar 

  4. Carmeli, M.: Group Theory and General Relativity, Representations of the Lorentz Group and Their Applications to the Gravitational Field. Imperial College Press, McGraw-Hill, New York (1977)

    MATH  Google Scholar 

  5. Cartan, É.: The Theory of Spinors. MIT Press, Cambridge (1966)

    MATH  Google Scholar 

  6. Cockle, J.: On systems of algebra involving more than one imaginary. Philos. Mag. 35, 434–435 (1849)

    Google Scholar 

  7. Del Castillo, G.F.T., Barrales, G.S.: Spinor formulation of the differential geometry of curves. Rev. Colomb. Mat. 38, 27–34 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Erisir, T., Gungor, M.A., Tosun, M.: Geometry of the hyperbolic spinors corresponding to alternative frame. Adv. Appl. Clifford Algebras 25(4), 799–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flaut, C., Shpakivskyi, V.: An efficient method for solving equations in generalized quaternion and octanion algebras. Adv. Appl. Clifford Algebras 25(2), 337–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flaut, C., Ştefănescu, M.: Some equations over generalized quaternion and octanion division algebras. Bull. Math. Soc. Sci. Math. Roumanie Tome 52(100), 427–439 (2009)

  11. Friedrich, T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence (2000)

    Book  MATH  Google Scholar 

  12. Gurlebeck, K., Sprossig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Toronto (1997)

    MATH  Google Scholar 

  13. Ketenci, Z., Erisir, T., Gungor, M.A.: A construction of hyperbolic spinors according to Frenet frame in Minkowski space. Dyn. Syst. Geom. Theor. 13(2), 179–193 (2015)

    MathSciNet  Google Scholar 

  14. Kisi, I., Tosun, M.: Spinor Darboux equations of curves in Euclidean 3-space. Math. Morav. 19(1), 87–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley Interscience, New York (1969)

    MATH  Google Scholar 

  16. Kula, L.: Split Quaternions and Geometrical Applications, Ph.D. Thesis. Ankara University, Ankara (2003)

    Google Scholar 

  17. Kula, L., Yayli, Y.: Split quaternions and rotations in semi Euclidean space. J. Korean Math. Soc. 44, 1313–1327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton University Press, New Jersey (1989)

    MATH  Google Scholar 

  19. O’Donnell, P.: Introduction to 2-Spinors in General Relativity, World Scientific Publishing, London (2003)

    Book  MATH  Google Scholar 

  20. O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  21. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Tresse, A.: Sur les invariants differentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)

    Article  MathSciNet  MATH  Google Scholar 

  23. Unal, D., Kisi, I., Tosun, M.: Spinor Bishop equation of curves in Euclidean 3-space. Adv. Appl. Clifford Algebras 23(3), 757–765 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vivarelli, M.D.: Development of spinors descriptions of rotational mechanics from Euler’s rigid body displacement theorem. Celest. Mech. 32, 193–207 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tülay Erişir.

Additional information

Communicated by Wolfgang Sprössig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakçioğlu, M., Erişir, T., Güngör, M.A. et al. The Hyperbolic Spinor Representation of Transformations in \(\mathbb {R}_1^3\) by Means of Split Quaternions. Adv. Appl. Clifford Algebras 28, 26 (2018). https://doi.org/10.1007/s00006-018-0844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0844-0

Mathematics Subject Classification

Keywords

Navigation