Skip to main content
Log in

Specific binding of polypyrimidine tract binding protein and hnRNP A1 to HIV-1 CRS elements

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus (HIV) Rev and human T-cell leukemia virus (HTLV) Rex proteins regulate viral RNA processing. Both proteins act to overcome the block to viral structural gene expression, at least in part, by reversing the inhibitory effect of intronic RNA sequences, termed cis-acting repressive (CRS) sequences. Using HTLV type II (HTLV-II) as a model, we recently showed that the function of a 5′ long terminal repeat (LTR) CRS correlates with in vitro binding by both polypyrimidine tract binding (PTB) protein (also known as hnRNP I) and hnRNP A1 to CRS RNA (1,2). Using radioimmunoprecipitation of proteins ultraviolet (UV) crosslinked to each HIV CRS RNA with monoclonal anti-hnRNP antibodies, we now demonstrate that hnRNP I and hnRNP A1 bind to two different HIV-1 CRS RNAs. In addition, we show that hnRNP I and hnRNP A1 binding to HIV-1 CRS RNAs can be specifically competed by HTLV-II CRS RNAs using electrophoretic mobility shift assay (EMSA)/UV crosslinking assays. Binding by both hnRNP I and hnRNP A1 to HIV-1 and HTLV-II CRS RNAs suggests a role for these proteins in CRS function that may be influenced by the Rev and Rex proteins, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black A.C., Ruland C.T., Luo J., Bakker A., Fraser J.K., and Rosenblatt J.D., Virology, 200, 29–34, 1995.

    Google Scholar 

  2. Black A.C., Luo J., Watanabe C., Chun S., Bakker A., Fraser J.K., Morgan J.P., and Rosenblatt J.D., J Virol 69, 6852–6858, 1995.

    Google Scholar 

  3. Ahmed Y.F., Hanly S.M., Malim M.H., Cullen B.R., and Greene W.C., Genes Devel 4, 1014–1022, 1990.

    Google Scholar 

  4. Arrigo S.J., Weitsman S., Rosenblatt J.D., and Chen I.S.Y., J Virol 63, 4875–4881, 1989.

    Google Scholar 

  5. Arrigo S.J. and Chen I.S.Y., Genes Devel 5, 808–818, 1991.

    Google Scholar 

  6. Ballaun C., Farrington G.K., Dobrovnik M., Rusche J., Hauber J., and Bohnlein E., J Virol 65, 4408–4413, 1991.

    Google Scholar 

  7. Black A.C., Chen I.S.Y., Arrigo S.J., Ruland C.T., Chin E., Allogiamento T., and Rosenblatt J.D., Virology 181, 433–444, 1991.

    Google Scholar 

  8. Black A.C., Ruland C.T., Yip M.T., Luo J., Tran B., Kalsi A., Quan E., Aboud M., Chen I.S.Y., and Rosenblatt J.D., J Virol 65, 6645–6653, 1991.

    Google Scholar 

  9. Chang D. and Sharp P., Cell 59, 789–795, 1989.

    Google Scholar 

  10. D'Agostino D., Felber B., Harrison J., and Paylakis G., Mol Cell Biol 12, 1375–1386, 1992.

    Google Scholar 

  11. Emerman M., Vazeux R., and Peden K., Cell 57, 1155–1165, 1989.

    Google Scholar 

  12. Felber B.K., Margarita H.C., Cladaras C., Copeland T., and Pavlakis G.N., Proc Natl Acad Sci USA 86, 1495–1499, 1989.

    Google Scholar 

  13. Hammarskjold M.L., Heimer J., Hammarskjold B., Sangwan I., Albert L., and Rekosh D., J Virol 63, 1959–1966, 1989.

    Google Scholar 

  14. Hikada M., Inoue J., Yoshida M., and Seiki M., EMBO J 7, 519–523, 1988.

    Google Scholar 

  15. Itoh M., Inoue J.I., Toyoshima H., Akizawa T., Higashi M., and Yoshida M., Oncogene 4, 1275–1279, 1989.

    Google Scholar 

  16. Kim J.H., Kaufman P.A., Hanly S.M., Rimsky L.T., and Green W.C., J Virol 65, 405–414, 1991.

    Google Scholar 

  17. Kjems J. and Sharp P.A., J Virol 67, 4769–4776, 1994.

    Google Scholar 

  18. Malim M.H., Hauber J., Maizel J.V., and Cullen B.R., Nature 338, 254–257, 1989.

    Google Scholar 

  19. Ohta M., Nyunoya H., Tanako H., Okamoto T., Akagi T., and Shimotohno K., J Virol 62, 4445–4449, 1988.

    Google Scholar 

  20. Rosen C.A., Terwilliger E., Dayton A., Sodroski J.G., and Haseltine W.A., Proc Natl Acad Sci USA 85, 2071–2075, 1988.

    Google Scholar 

  21. Rosenblatt J.D., Cann A.J., Slamon D.J., Smalberg I.S., Shah N.P., Fujii J., Wachsman W., and Chen I.S.Y., Science 240, 916–919, 1988.

    Google Scholar 

  22. Seiki M., Hikikoshi A., and Yoshida M., Virology 176, 81–86, 1990.

    Google Scholar 

  23. Bray M., Prasad S., Dubay J.W., Hunter E., Jeng K.T., Rekosh D., and Hammarskjold M.L., Proc Natl Acad Sci USA 91, 1256–1260, 1994.

    Google Scholar 

  24. Brighty D.W. and Rosenberg M., Proc Natl Acad Sci USA 91, 8314–8318, 1994.

    Google Scholar 

  25. Cochrane A.W., Jones K.S., Beidas S., Dillon P.J., Skalka A.M., and Rosen C.A., J Virol 65, 5305–5313, 1991.

    Google Scholar 

  26. Keller R., Montagnier L., and Cordonnier A., Virology 192, 33–37, 1993.

    Google Scholar 

  27. Maldarelli F., Martin M.A., and Strebel K., J Virol 65, 5732–5743, 1991.

    Google Scholar 

  28. Olsen H.S., Cochrane A.W., and Rosen C., Virology 191, 709–715, 1992.

    Google Scholar 

  29. Nasioulas G., Zolotukhin A.S., Tabernero C., Solomin L., Cunningham C.P., Pavlakis G.N., and Felber B.K., J Virol 68, 2986–2993, 1994.

    Google Scholar 

  30. Schwartz S., Felber B.K., and Pavlakis G.N., J Virol 66, 150–159, 1992.

    Google Scholar 

  31. Schwartz S., Campbell M., Nasioulas G., Harrison J., Felber B.K., and Pavlakis G.N., J Virol 66, 7176–7182, 1992.

    Google Scholar 

  32. Gil A., Sharp P.A., Jamison S.F., and Garcia-Blanco M.A., Gene Devel 5, 1224–1236, 1991.

    Google Scholar 

  33. Mayeda A. and Krainer A.R., Cell 68, 365–375, 1992.

    Google Scholar 

  34. Sierakowska H., Szer H.W., Furdon P.J., and Kole R., Nucleic Acids Res 14, 5241–5254, 1986.

    Google Scholar 

  35. Ghetti A.S., Pinol-Roma S., Michael W.M., Morandi C., and Dreyfuss G., Nucleic Acids Res 20, 3671–3678, 1992.

    Google Scholar 

  36. Pinol-Roma S. and Dreyfuss G., Nature 355, 730–732, 1992.

    Google Scholar 

  37. Witherell G.W., Gil A., and Wimmer E., Biochemistry 32, 8268–8275, 1993.

    Google Scholar 

  38. Dreyfuss G., Matunis M.J., Pinol-Roma S., and Burd G., Annu Rev Biochem 62, 289–321, 1993.

    Google Scholar 

  39. Zolotukhin A.S., Valentin A., Pavlakis G.N., and Felber B.K., J Virol 68, 7944–7952, 1994.

    Google Scholar 

  40. Mayraud S.H. and Pederson T., Nucleic Acids Res 18, 3307–3318, 1990.

    Google Scholar 

  41. Ge H., Zuo P., and Manley J., Cell 66, 373–382, 1991.

    Google Scholar 

  42. Krainer A.R., Mayeda A., Kozak D., and Binns G., Cell 66, 383–394, 1991.

    Google Scholar 

  43. Hammarskjold M.L., Li H., Rekosh D., and Prasad S., J Virol 68, 951–958, 1994.

    Google Scholar 

  44. Luo Y., Yu H., and Peterlin B.M., J Virol 68, 3850–3856, 1994.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, A.C., Luo, J., Chun, S. et al. Specific binding of polypyrimidine tract binding protein and hnRNP A1 to HIV-1 CRS elements. Virus Genes 12, 275–285 (1996). https://doi.org/10.1007/BF00284648

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284648

Key words

Navigation