Skip to main content
Log in

Purification and characterization of a (R)-2,3-butanediol dehydrogenase from Saccharomyces cerevisiae

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A NAD-dependent (R)-2,3-butanediol dehydrogenase (EC 1.1.1.4), selectively catalyzing the oxidation at the (R)-center of 2,3-butanediol irrespective of the absolute configuration of the other carbinol center, was isolated from cell extracts of the yeast Saccharomyces cerevisiae. Purification was achieved by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, affinity chromatography on Matrex Gel Blue A and Superose 6 prep grade chromatography leading to a 70-fold enrichment of the specific activity with 44% yield. Analysis of chiral products was carried out by gas chromatographic methods via pre-chromatographic derivatization and resolution of corresponding diasteromeric derivatives. The enzyme was capable to reduce irreversibly diacetyl (2,3-butanediol) to (R)-acetoin (3-hydroxy-2-butanone) and in a subsequent reaction reversibly to (R,R)-2,3-butanediol using NADH as coenzyme. 1-Hydroxy-2-ketones and C5-acyloins were also accepted as substrates, whereas the enzyme was inactive towards the reduction of acetone and dihydroxyacetone. The relative molecular mass (M r) of the enzyme was estimated as 140 000 by means of gel filtration. On SDS-polyacrylamide gel the protein decomposed into 4 (identical) subunits of M r 35 000. Optimum pH was 6.7 for the reduction of acetoin to 2,3-butanediol and 7.2 for the reverse reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GC-MS:

gas chromatography-mass spectrometry

i.d.:

internal diameter

M r :

relative molecular mass

MTPA-Cl:

α-methoxy-α-trifluoromethylphenyl acetic acid chloride

PEIC:

1-phenylethylisocyanate

References

  • Andrews P (1965) The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J 96: 595–606

    Google Scholar 

  • Barry J, Kagan HB (1981) Synthesis of enantiomers of 1,2-heptanediol. Synthesis:453–455

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Bryn K, Hetland O, Störmer FC (1971) The reduction of diacetyl and acetoin in Aerobacter aerogenes: Evidence for one enzyme catalyzing both reactions. Eur J Biochem 18:116–119

    Google Scholar 

  • Cho RK, Okitani A, Kato H (1986) Polymerization of acetylated lysozyme and impairment of their amino acid residues due to α-dicarbonyl and α-hydroxycarbonyl compounds. Agric Biol Chem 50:1373–1380

    Google Scholar 

  • Guette J-P, Spassky N (1972) Préparation et propriétés chiroptiques d'α-glycols R-CHOH-CH2OH. Bull Soc Chim Fr pp 4217–4224

  • Hanes CS (1932) The determination of enzyme dissociation contants. Biochem J 26:1406–1421

    Google Scholar 

  • Heidlas J, Tressl R (1990) Purification and properties of two oxidoreductases catalyzing the enantioselective reduction of diacetyl and other diketones from baker's yeast. Eur J Biochem 188:165–174

    Google Scholar 

  • Heidlas J, Engel K-H, Tressl R (1988) Purification and characterization of two oxidoreductases involved in the enantioselective reduction of 3-oxo, 4-oxo and 5-oxo esters in baker's yeast. Eur J Biochem 172:633–639

    Google Scholar 

  • Hetland O, Olsen BR, Christensen TB, Störmer FC (1971a) Diacetyl (acetoin) reductase from Aerobacter aerogenes: Structural properties. Eur J Biochem 20:200–205

    Google Scholar 

  • Hetland O, Bryn K, Störmer FC (1971b) Diacetyl (acetoin) reductase from Aerobacter aerogenes: Evidence for multiple forms of the enzyme. Eur J Biochem 20: 206–208

    Google Scholar 

  • Höhn-Bentz H, Radler F (1978) Bacterial 2,3-butanediol dehydrogenases. Arch Microbiol 116:197–203

    Google Scholar 

  • Johansen L, Larsen SH, Störmer FC (1973) Diacetyl (acetoin) reductase from Aerobacter aerogenes: Kinetic studies of the reduction of diacetyl to acetoin. Eur J Biochem 34:97–99

    Google Scholar 

  • Larsen HS, Störmer FC (1973) Diacetyl (acetoin) reductase from Aerobacter aerogenes: Kinetic mechanism and regulation by acetate of the reversible reduction of acetoin to 2,3-butanediol. Eur J Biochem 34:100–106

    Google Scholar 

  • Larsen HS, Johansen L, Störmer FC (1973) Formation of 2,3-pentanediol from 2,3-pentanedione and acletylethylcarbinol by diacetyl (acetoin) reductase from Aerobacter aerogenes. A possible new pathway. FEBS Lett 31:39–41

    Google Scholar 

  • Levene PA, Walti A (1943) l-1,2-Propanediol. In: Blatt AH (ed) Organic syntheses, collective, vol II. Wiley, New York, pp 545–546

    Google Scholar 

  • Liebs P, Wolter H-C, Krüger M (1969) Zum Mechanismus des Diacetylabbaus durch Saccharomyces cerevisiae. Nahrung 13: 455–459

    Google Scholar 

  • Magee RJ, Kosaric N (1987) The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161

    Google Scholar 

  • Neish AC (1950) Note on the stereoisomers of 2,3-butanediol produced by yeast. Can J Res 28B:660–661

    Google Scholar 

  • Neuberg C, Kobel M (1925) Über das Verhalten des Acetoins zu Hefe. Biochem Z 160:250–255

    Google Scholar 

  • Neuberg C, Nord FF (1919) Phytochemische Reduktion von Diketonen. Ber Dtsch Chem Ges 52B:2248–2254

    Google Scholar 

  • Prelog V (1964) Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl Chem 9:119–130

    Google Scholar 

  • Taylor MB, Juni E (1960) Stereoisomeric specificities of 2,3-butanediol dehydrogenases. Biochim Biophys Acta 39:448–457

    Google Scholar 

  • Tittel D, Radler F (1979) Über die Bildung von 2,3-Butandiol bei Saccharomyces cerevisiae durch Acetoin-Reduktase. Monatsschr Brau 32:260–267

    Google Scholar 

  • Ui S, Masuda H, Muraki H (1983) Specificity and electrophoretic natures of bacterial 2,3-butanediol dehydrogenases. J Ferment Technol 61:467–471

    Google Scholar 

  • Ui S, Matsuyama N, Masuda H, Muraki H (1984) Mechanisms for the formation of 2,3-butanediol stereoisomers in Klebsiella pneumoniae. J Ferment Technol 62:551–559

    Google Scholar 

  • Ui S, Masuda T, Masuda H, Muraki H (1986) Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymixa. J Ferment Technol 64:481–486

    Google Scholar 

  • Verduyn C, Breedveld GJ, Scheffers WA, Van Dijken JP (1988a) Purification and properties of dihydroxyacetone reductase and 2,3-butanediol dehydrogenase from Candida utilis CBS 621. Yeast 4:127–133

    Google Scholar 

  • Verduyn C, Breedveld GJ, Scheffers WA, Van Dijken JP (1988b) Metabolism of 2,3-butanediol in yeasts. Yeast 4:135–142

    Google Scholar 

  • Voloch M, Ladisch MR, Rodwell VW, Tsao GT (1983) Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: A new model. Biotechnol Bioeng 25:173–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidlas, J., Tressl, R. Purification and characterization of a (R)-2,3-butanediol dehydrogenase from Saccharomyces cerevisiae . Arch. Microbiol. 154, 267–273 (1990). https://doi.org/10.1007/BF00248966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248966

Key words

Navigation