Skip to main content
Log in

Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars Using Diesel or Biodiesel

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The characterisation of aggregates, like soot, firstly requires the determination of the size distribution of the primary particles. The primary particle size of combustion generated aggregates depends upon the combustion environment and the formation conditions, such as temperature, pressure and fuel-to-air ratio, among others. Since the combustion characteristics are different in the different types of burners, the characterisation of primary particles may offer the possibility to distinguish soot from different sources. In this paper, we present the signature of the primary particles and the aggregates of soot emitted by cars using diesel or biodiesel, by domestic heating, and by aircraft exhausts, which can be considered as the major sources as derived from measurements on transmission electron micrographs. The size distributions of all aggregates types with different aerodynamic diameter were log-normal and quasi-monodisperse. The size distribution of the primary particles for soot emitted by different sources showed minor differences. However, a comparison between the diameter of the primary particles and those obtained using a standard method for carbon black revealed discrepancies. The median diameter of the primary particles was combined with the median number of primary particles in an aggregate to calculate the relative particle surface area available for adsorption. In a similar way, the relative specific surface area was determined. The surface area was measured using the Brunauer-Emmett-Teller (B.E.T.) nitrogen adsorption method and the relative surface area available for adsorption was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM D3849-95a, 1999: Standard Test Method for Carbon Black, in Primary Aggregate Dimensions from Electron Microscopy Image Analysis, Annual Book of Standards, American Society for Testing and Materials, Philadelphia, 612.

  • Berner, A., Sidla, S., Galambos, Z., Kruisz, C., Hitzenberger, R., ten Brink, H. M., and Kos, G. P. A., 1996: Modal character of atmospheric black carbon size distributions, J. Geophys. Res. 101, 19559–19565.

    Article  Google Scholar 

  • Bérubé, K. A., Jones, T. P., Williamson, B. J., Winters, C., Morgan, A. J., and Richards, R. J., 1999: Physicochemical characterisation of diesel exhaust particles: Factor for assessing biological activity, Atmos. Environ. 33, 1599–1614.

    Article  Google Scholar 

  • Blake, D. F. and Kato, K., 1995: Latitudinal distribution of black carbon soot in the upper and lower stratosphere, J. Geophys. Res. 100, 7195–7202.

    Article  Google Scholar 

  • Brasil, A. M., Farias, T. L., and Carvalho, M. G., 1999: A recipe for image characterization of fractal-like aggregates, J. Aerosol Sci. 30, 1379–1389.

    Article  Google Scholar 

  • Brasil, A. M., Farias, T. L., Carvalho, M. G., and Koylu, U. O., 2001: Numerical characterization of the morphology of aggregated particles, J. Aerosol Sci. 32, 489–508.

    Article  Google Scholar 

  • Cabot., 1999: Product Guide, Cabot European Rubber Black Division, Issue no. 2.

  • Chughtai, A. R., Williams, G. R., Atteya, M. M. O., Miller, N. J., and Smith, D. M., 1999: Carbonaceous particle hydration, Atmos. Environ. 33, 2679–2687.

    Article  Google Scholar 

  • Clague, A. D. H., Donnet, J. B., Wang, T. K., and Peng, J. C. M., 1999: A comparison of diesel engine soot with carbon black, Carbon 37, 1553–1565.

    Article  Google Scholar 

  • Covitch, M. J., 1989: Oil thickening in the Mack T-7 engine test II – Effects of fuel composition on soot chemistry. SAE paper no. 880259, Society of Automotive Engineers. Warrendale, PA.

  • De Santis, F. and Allegrini, I., 1992: Heterogeneous reactions of SO2 and NO2 on carbonaceous surfaces, Atmos. Environ. 26A, 3061–3064.

    Google Scholar 

  • Harris, S. J. and Maricq, M. M., 2001: Signature size distributions for diesel and gasoline engine exhaust particulate matter, J. Aerosol Sci. 32, 749–764.

    Article  Google Scholar 

  • Herd, C. R., McDonald, G. C., and Hess, W. M., 1992: Morphology of carbon – black aggregates: Fractal versus Euclidean dimension, Rubber Chem. Technol. 65, 107–129.

    Google Scholar 

  • Hess, W. M. and McDonald, G. C., 1983: Improved particle size measurements on pigments for rubber, Rubber Chem. Technol. 56, 892–917.

    Google Scholar 

  • Hueglin, C., Scherrer, L., and Burtscher, H., 1997: An accurate continuously adjustable dilution system (1:10 to 1:10E4) for submicron aerosols, J. Aerosol Sci. 28, 1049–1055.

    Article  Google Scholar 

  • Ishiguro, T., Suzuki, N., Fujitani, Y., and Morimoto, H., 1991: Microstructural changes of diesel soot during oxidation, Combust. Flame. 85, 1–6.

    Article  Google Scholar 

  • Jing, L., Forss, A. M., Bach, C., Graf, R., and Eggenberger, U., 1996: Umfassende, wirkungsorganisierte Charakterisierung von Partikeln aus Dieselabgasen, Gefahrstoffe Reinhaltung der Luft. 56, 139–145.

    Google Scholar 

  • Kärcher, B., Peter, T., Biermann, U. M., and Schumann, U., 1996: The initial composition of jet condensation trails, J. Atmos. Sci. 53, 3066–3083.

    Article  Google Scholar 

  • Kärcher, B., 1997: Heterogeneous chemistry in aircraft wakes: Constraints for uptake coefficients, J. Geophys. Res. 102, 19119–19135.

    Article  Google Scholar 

  • Kerminen, V. M., Mäkelä, T. E., Ojanen, C. H., Hillamo, R. E., Vilhunen, J. K., Rantanen, L., Havers, N., von Bohlen, A., and Klockow, D., 1997: Characterization of the particulate phase in the exhaust from a diesel car, Environ. Sci. Technol. 31, 1883–1889.

    Article  Google Scholar 

  • Klein, H., Lox, E., Kreuzer, T., Kawanami, M., Ried, T., and Bächmann, K., 1998: Diesel particulate emissions of passenger cars – new insights into structural changes during the process of exhaust aftertreatment using diesel oxidation catalysts. SAE paper no. 980196. Society of Automotive Engineers. Warrendale, PA.

  • Kops, J., Hermans, L., and van de Vate, J. F., 1974: Calibration of a Stöber centrifugal aerosol spectrometer, Aerosol Sci. 5, 379–386.

    Article  Google Scholar 

  • Lammel, G. and Novakov, T., 1995: Water nucleation properties of carbon black and diesel soot particles, Atmos. Environ. 29, 813–823.

    Article  Google Scholar 

  • Marple, V. A., Rubow, K. L., and Olson, B. A., 1993: Principles, Techniques, and Applications, in: K. Willeke and P. A. Baron (eds.), Aerosol Measurements, New York, NY: Van Nostrand-Reinhold, 206–232.

    Google Scholar 

  • McAughey, J. J., 1997: Regional Lung Deposition and Dose of Ambient Particulate in Humans by Particle Mass and Number. Research Report, AEA Technology, Aerosol Science Centre, Oxfordshire, UK.

  • Okada, K., Ikegami, M., Uchino, O., Nikaidou, Y., Zaizen, Y., Tsutsumi, Y., and Makino, Y., 1992: Extremely high proportions of soot particles in the upper troposphere over Japan, Geophys. Res. Lett. 19, 921–924.

    Google Scholar 

  • Petzold, A. and Schröder, F. P., 1998: Jet engine exhaust aerosol characterization, Aerosol Sci. Tech. 28, 62–76.

    Google Scholar 

  • Pope, C. A., Thun, M. J., Namboodriri, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E., and Heath, C. W., 1995: Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults, Am. J. Resp. Crit. Care. 151, 669–674.

    Google Scholar 

  • Pott, F., 1991: Dieselmotorabgas – Tierexperimentelle Ergebnisse zur Risikoabschätzung. In Krebserzeugende Stoffe in der Umwelt, Risiko, Minimierung, 211, VDI Verlag, Düsseldorf.

  • Roquerol, F., Roquerol, J., and Sing, K., 1999: Adsorption by Powders & Porous Solids. Academic Press, London.

    Google Scholar 

  • Schraml, S., Will, S., and Leipertz, A., 1999: Simultaneous measurement of soot mass concentration and primary particle size in the exhaust of a DI diesel engine by time-resolved laser-induced incandescence (TIRE-LII); in Emissions Technology, Measurement, and Testing, SAE SP-1420, Society of Automotive Engineers, Warrendale, 1.

  • Smith, D. M. and Chughtai, A. R., 1995: The surface structure and reactivity of black carbon, Colloids and Surfaces A. 105, 47–77.

    Article  Google Scholar 

  • Sunderland, P. B., Köylü, Ü. Ö., and Faeth, G. M., 1995: Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air, Combust. Flame 1 00, 310–322.

    Article  Google Scholar 

  • Whitefield, P. D., Trueblood, M. B., and Hagen, D. E., 1993: Size and hydration characteristics of laboratory simulated jet engine combustion aerosols, Particul. Sci. Technol. 11, 25–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Van Grieken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smekens, A., Godoi, R.H.M., Berghmans, P. et al. Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars Using Diesel or Biodiesel. J Atmos Chem 52, 45–62 (2005). https://doi.org/10.1007/s10874-005-6903-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-005-6903-7

Key words

Navigation