Skip to main content
Log in

Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0–10 × 10–6 mol L–1 range with a limit of detection of 8.0 × 10–7 mol L–1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10–7 mol L–1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions.

Graphical abstract

Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. “Red” is reduced form and “Oxi” is oxidized form of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silva RR, Raymundo-Pereira PA, Campos AM et al (2020) Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 218:121153. https://doi.org/10.1016/j.talanta.2020.121153

    Article  CAS  PubMed  Google Scholar 

  2. Baccarin M, Ciciliati M, Oliveira ON et al (2020) Pen sensor made with silver nanoparticles decorating graphite-polyurethane electrodes to detect bisphenol-A in tap and river water samples. Mater Sci Eng C 114:110989. https://doi.org/10.1016/j.msec.2020.110989

    Article  CAS  Google Scholar 

  3. Raymundo-Pereira PA, Gomes NO, Carvalho JHS et al (2020) Simultaneous Detection of Quercetin and Carbendazim in Wine Samples Using Disposable Electrochemical Sensors. ChemElectroChem 7:3074–3081. https://doi.org/10.1002/celc.202000788

    Article  CAS  Google Scholar 

  4. Raymundo-Pereira PA, Gomes NO, Shimizu FM et al (2020) Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem Eng J 408:127279. https://doi.org/10.1016/j.cej.2020.127279

    Article  CAS  Google Scholar 

  5. Ciui B, Tertiş M, Cernat A et al (2018) Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening of Pseudomonas aeruginosa Virulence Factors. Anal Chem 90:7761–7768. https://doi.org/10.1021/acs.analchem.8b01915

    Article  CAS  PubMed  Google Scholar 

  6. Mishra RK, Sempionatto JR, Li Z et al (2020) Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a Wearable Electrochemical Ring Sensor. Talanta 211:120757. https://doi.org/10.1016/j.talanta.2020.120757

    Article  CAS  PubMed  Google Scholar 

  7. Moonla C, Goud KY, Teymourian H et al (2020) An integrated microcatheter-based dual-analyte sensor system for simultaneous, real-time measurement of propofol and fentanyl. Talanta 218:121205. https://doi.org/10.1016/j.talanta.2020.121205

    Article  CAS  PubMed  Google Scholar 

  8. Vargas E, Povedano E, Krishnan S et al (2020) Simultaneous cortisol/insulin microchip detection using dual enzyme tagging. Biosens Bioelectron 167:112512. https://doi.org/10.1016/j.bios.2020.112512

    Article  CAS  PubMed  Google Scholar 

  9. Arduini F, Cinti S, Mazzaracchio V et al (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 156:112033. https://doi.org/10.1016/J.BIOS.2020.112033

    Article  CAS  PubMed  Google Scholar 

  10. Govindasamy M, Sriram B, Wang SF, Chang YJ, Rajabathar JR (2020) Highly sensitive determination of cancer toxic mercury ions in biological and human sustenance samples based on green and robust synthesized stannic oxide nanoparticles decorated reduced graphene oxide sheets. Anal Chim Acta 1137:181–190. https://doi.org/10.1016/j.aca.2020.09.014

    Article  CAS  PubMed  Google Scholar 

  11. Arul P, Huang ST, Gowthaman NSK et al (2021) Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A. Anal Chim Acta 1150:338228. https://doi.org/10.1016/J.ACA.2021.338228

    Article  CAS  PubMed  Google Scholar 

  12. Govindasamy M, Wang SF, Almahri A, Rajaji U (2021) Effects of sonochemical approach and induced contraction of core–shell bismuth sulfide/graphitic carbon nitride as an efficient electrode materials for electrocatalytic detection of antibiotic drug in foodstuffs. Ultrason Sonochem 72:105445. https://doi.org/10.1016/J.ULTSONCH.2020.105445

    Article  CAS  PubMed  Google Scholar 

  13. Rajaji U, Chinnapaiyan S, Chen S-M et al (2021) Design and Fabrication of Yttrium Ferrite Garnet-Embedded Graphitic Carbon Nitride: A Sensitive Electrocatalyst for Smartphone-Enabled Point-of-Care Pesticide (Mesotrione) Analysis in Food Samples. ACS Appl Mater & Interfaces 13:24865–24876. https://doi.org/10.1021/acsami.1c04597

    Article  CAS  Google Scholar 

  14. Musa AM, Kiely J, Luxton R, Honeychurch KC (2021) Recent Progress in Screen-printed Electrochemical Sensors and Biosensors for the Detection of Estrogens. TrAC Trends Anal Chem 139:116254. https://doi.org/10.1016/j.trac.2021.116254

    Article  CAS  Google Scholar 

  15. Hong X, Zhao G, Zhou Y, et al (2021) Risks to aquatic environments posed by 14 pharmaceuticals as illustrated by their effects on zebrafish behaviour. Sci Total Environ 771:145450. https://doi.org/10.1016/j.scitotenv.2021.145450

  16. Gornik T, Carena L, Kosjek T, Vione D (2021) Phototransformation study of the antidepressant paroxetine in surface waters. Sci Total Environ 771:145450. https://doi.org/10.1016/j.scitotenv.2021.145380

    Article  CAS  Google Scholar 

  17. Lu D, Yu L, Li M et al (2021) Behavioral disorders caused by nonylphenol and strategies for protection. Chemosphere 275:129973. https://doi.org/10.1016/j.chemosphere.2021.129973

    Article  CAS  PubMed  Google Scholar 

  18. Carneiro RB, Gonzalez-Gil L, Londoño YA et al (2020) Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. J Hazard Mater 389:121888. https://doi.org/10.1016/j.jhazmat.2019.121888

    Article  CAS  PubMed  Google Scholar 

  19. Song SW, Kim D, Kim J et al (2021) Flexible Nanocellulose-based SERS Substrates for Fast Analysis of Hazardous Materials by Spiral Scanning. J Hazard Mater 414:125160. https://doi.org/10.1016/j.jhazmat.2021.125160

    Article  CAS  PubMed  Google Scholar 

  20. Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R et al (2019) Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 192:508–533. https://doi.org/10.1016/j.talanta.2018.09.056

    Article  CAS  PubMed  Google Scholar 

  21. Yu M, Wu L, Miao J et al (2019) Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal Chim Acta 1080:84–94. https://doi.org/10.1016/j.aca.2019.06.053

    Article  CAS  PubMed  Google Scholar 

  22. Cen S, Chen Y, Tan J et al (2021) The fabrication of a highly ordered molecularly imprinted mesoporous silica for solid-phase extraction of nonylphenol in textile samples. Microchem J 164:105954. https://doi.org/10.1016/j.microc.2021.105954

    Article  CAS  Google Scholar 

  23. Oghli AH, Soleymanpour A (2020) Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater Sci Eng C 108:110407. https://doi.org/10.1016/j.msec.2019.110407

    Article  CAS  Google Scholar 

  24. Fuentes A, Pineda M, Venkata K (2018) Comprehension of Top 200 Prescribed Drugs in the US as a Resource for Pharmacy Teaching Training and Practice. Pharmacy 6:43. https://doi.org/10.3390/pharmacy6020043

    Article  PubMed Central  Google Scholar 

  25. Soares A, Guieysse B, Jefferson B et al (2008) Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049. https://doi.org/10.1016/j.envint.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  26. Miller JN (1991) Basic statistical methods for analytical chemistry. Part 2. calibration and regression methods. A review Analyst 116:3–14. https://doi.org/10.1039/AN9911600003

    Article  CAS  Google Scholar 

  27. Miller JC, Miller JN (1988) Basic Statistical Methods for Analytical Chemistry Part I; Statistics of Repeated Measurements. A review. Analyst 113:1351–1356

    Article  CAS  Google Scholar 

  28. Lioupi A, Kabir A, Furton KG, Samanidou V (2019) Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. J Chromatogr B Anal Technol Biomed Life Sci 1118:171–179. https://doi.org/10.1016/j.jchromb.2019.04.045

    Article  CAS  Google Scholar 

  29. Pacheco-Fernández I, Najafi A, Pino V et al (2016) Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters. Talanta 158:125–133. https://doi.org/10.1016/j.talanta.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Q, Li Y, Ouyang H et al (2006) High-performance liquid chromatographic analysis of bisphenol A and 4-nonylphenol in serum, liver and testis tissues after oral administration to rats and its application to toxicokinetic study. J Chromatogr B Anal Technol Biomed Life Sci 830:322–329. https://doi.org/10.1016/j.jchromb.2005.11.024

    Article  CAS  Google Scholar 

  31. Campos AM, Raymundo-Pereira PA, Mendonça CD et al (2018) Size Control of Carbon Spherical Shells for Sensitive Detection of Paracetamol in Sweat, Saliva, and Urine. ACS Appl Nano Mater 1:654–661. https://doi.org/10.1021/acsanm.7b00139

    Article  CAS  Google Scholar 

  32. Raymundo-Pereira PA, Gomes NO, Machado SAS, Oliveira ON (2019) Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. J Electroanal Chem 848:113319. https://doi.org/10.1016/j.jelechem.2019.113319

    Article  CAS  Google Scholar 

  33. Yu L, Falco C, Weber J et al (2012) Carbohydrate-derived hydrothermal carbons: A thorough characterization study. Langmuir 33:12373–12383. https://doi.org/10.1021/la3024277

    Article  CAS  Google Scholar 

  34. Xia X, Zhang Y, Fan Z et al (2015) Novel Metal@Carbon Spheres Core-Shell Arrays by Controlled Self-Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Adv Energy Mater 5:1401709. https://doi.org/10.1002/aenm.201401709

    Article  CAS  Google Scholar 

  35. Lu Q, Zhang W, Wang Z et al (2013) A facile electrochemical sensor for nonylphenol determination based on the enhancement effect of cetyltrimethylammonium bromide. Sensors (Switzerland) 13:758–768. https://doi.org/10.3390/s130100758

    Article  CAS  Google Scholar 

  36. Brycht M, Skrzypek S, Karadas-Bakirhan N et al (2015) Voltammetric behavior and determination of antidepressant drug paroxetine at carbon-based electrodes. Ionics (Kiel) 21:2345–2354. https://doi.org/10.1007/s11581-015-1390-6

    Article  CAS  Google Scholar 

  37. Rutkowska M, Namieśnik J, Konieczka P (2020) Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury. Microchem J 153:104338. https://doi.org/10.1016/j.microc.2019.104338

    Article  CAS  Google Scholar 

  38. Tran TTH, Kim J, Rosli N et al (2019) Certification and stability assessment of recombinant human growth hormone as a certified reference material for protein quantification. J Chromatogr B Anal Technol Biomed Life Sci 1126–1127:121732. https://doi.org/10.1016/j.jchromb.2019.121732

    Article  CAS  Google Scholar 

  39. Lee J, Kim B, Lee SY et al (2019) Development of an infant formula certified reference material for the analysis of organic nutrients. Food Chem 298:125088. https://doi.org/10.1016/j.foodchem.2019.125088

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Zhang X, Liu S et al (2011) Development of molecularly imprinted electrochemical sensor with titanium oxide and gold nanomaterials enhanced technique for determination of 4-nonylphenol. Sensors Actuators B Chem 152:292–298. https://doi.org/10.1016/j.snb.2010.12.022

    Article  CAS  Google Scholar 

  41. David IG, Badea IA, Radu GL (2013) Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turkish J Chem 37:91–100. https://doi.org/10.3906/kim-1203-49

    Article  CAS  Google Scholar 

  42. Liu X, Feng H, Liu X, Wong DKY (2011) Electrocatalytic detection of phenolic estrogenic compounds at NiTPPS|carbon nanotube composite electrodes. Anal Chim Acta 689:212–218. https://doi.org/10.1016/j.aca.2011.01.037

    Article  CAS  PubMed  Google Scholar 

  43. Ai J, Guo H, Xue R et al (2018) A self-probing, gate-controlled, molecularly imprinted electrochemical sensor for ultrasensitive determination of p-nonylphenol. Electrochem Commun 89:1–5. https://doi.org/10.1016/J.ELECOM.2018.02.008

    Article  CAS  Google Scholar 

  44. Xue F, Gao Z-Y, Sun X-M et al (2015) Electrochemical Determination of Environmental Hormone Nonylphenol Based on Composite Film Modified Gold Electrode. J Electrochem Soc 162:H338–H344. https://doi.org/10.1149/2.0271506jes

    Article  CAS  Google Scholar 

  45. Erk N, Biryol J (2003) Voltammetric and HPLC techniques for the determination of paroxetine hydrochloride. Pharmazie 58:699–704

    CAS  PubMed  Google Scholar 

  46. Ajayi RF, Nxusani E, Douman SF et al (2016) An Amperometric Cytochrome P450–2D6 Biosensor System for the Detection of the Selective Serotonin Reuptake Inhibitors (SSRIs) Paroxetine and Fluvoxamine. J Nano Res 44:208–228. https://doi.org/10.4028/www.scientific.net/JNanoR.44.208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to FAPESP (2020/09587-8, 2016/06139-9, 2019/01777-5, 2018/22214-6 and 2016/01919-6), CNPq (309370/2021-3, 164569/2020-0 and 423952/2018-8), and CAPES for the financial support. The authors are especially grateful to Mr. Marcio de Paula (CAQI/IQSC/USP) for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo A. Raymundo-Pereira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 385 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, N.O., Mendonça, C.D., Machado, S.A.S. et al. Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples. Microchim Acta 188, 359 (2021). https://doi.org/10.1007/s00604-021-05024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05024-4

Keywords

Navigation