Skip to main content

Advertisement

Log in

Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Experiments have been performed to determine the effect of deformation on degassing of bubble-bearing melts. Cylindrical specimens of phonolitic composition, initial water content of 1.5 wt.% and 2 vol.% bubbles, have been deformed in simple-shear (torsional configuration) in an internally heated Paterson-type pressure vessel at temperatures of 798–848 K, 100–180 MPa confining pressure and different final strains. Micro-structural analyses of the samples before and after deformation have been performed in two and three dimensions using optical microscopy, a nanotomography machine and synchrotron tomography. The water content of the glasses before and after deformation has been measured using Fourier Transform Infrared Spectroscopy (FTIR). In samples strained up to a total of γ ∼ 2 the bubbles record accurately the total strain, whereas at higher strains (γ ∼ 10) the bubbles become very flattened and elongate in the direction of shear. The residual water content of the glasses remains constant up to a strain of γ ∼ 2 and then decreases to about 0.2 wt.% at γ ∼ 10. Results show that strain enhances bubble coalescence and degassing even at low bubble volume-fractions. Noticeably, deformation produced a strongly water under-saturated melt. This suggests that degassing may occur at great depths in the volcanic conduit and may force the magma to become super-cooled early during ascent to the Earth’s surface potentially contributing to the genesis of obsidian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Burgisser A, Gardner J. E. (2004). Experimental constraints on degassing and permeability in volcanic conduit flow. Bulletin of volcanology, 67(1), 42–56. doi:10.1007/s00445-004-0359-5.

    Article  Google Scholar 

  • Castro J, Manga M, Cashman K (2002) Dynamics of obsidian flows inferred from microstructures: insights from microlite preferred orientations. Earth Planet Sci Lett 199:211–226

    Article  Google Scholar 

  • Castro JM, Mercer C (2004) Microlite textures and volatile contents of obsidian from the Inyo volcanic chain. California Geophys Res Lett. doi:10.1029/2004GL020489

    Google Scholar 

  • Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaiten volcano, Chile. Nature 461:780–U729

    Article  Google Scholar 

  • Castro JM, Manga M, Martin MC (2005) Vesiculation rates of obsidian domes inferred from H2O concentration profiles. Geophys Res Lett. doi:10.1029/2005GL024029

    Google Scholar 

  • Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosys. doi:10.1029/2008GC002138

    Google Scholar 

  • Dingwell DB (1998) The glass transition in hydrous granitic melts. Phys Earth Planet Inter 107:1–8

    Article  Google Scholar 

  • Dingwell DB, Webb SL (1992) The fluxing effect of fluorine at magmatic temperatures (600-800-degrees-C)—a scanning calorimetric study. Amer Mineralog 77:30–33

    Google Scholar 

  • Gaillard F, Scaillet B, Pichavant M, Beny JL (2001) The effect of water and fO(2) on the ferric-ferrous ratio of silicic melts. Chem Geol 174:255–273

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Gonnerman HM, Manga M (2003) Flow banding in obsidians: a record of evolving textural heterogeneity during magma deformation. Earth Planet Sci Lett 236:135–147

    Article  Google Scholar 

  • Gonnerman HM, Manga M (2007) The fluid mechanics inside a volcano. Ann Rev Fluid Mech 39:321–356

    Article  Google Scholar 

  • Gottsmann J, Dingwell DB (2001) The cooling of frontal flow ramps: a calorimetric study on the rocche rosse rhyolite flow, Lipari, Aeolian Islands, Italy. Terra Nova 13:157–164

    Article  Google Scholar 

  • Gottsmann J, Dingwell DB (2002) The thermal history of a spatter-fed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bull Volcanol 64:410–422

    Article  Google Scholar 

  • Hammer JE (2008) Experimental studies of the kinetics and energetics of magma crystallization. Rev Mineral Geochem 69:9–59

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  Google Scholar 

  • Hess KU, Cordonnier B, Lavallee Y, Dingwell DB (2008) Viscous heating in rhyolite: an in situ experimental determination. Earth Planet Sci Lett 275:121–126

    Article  Google Scholar 

  • Iacono-Marziano G, Schmidt BC, Dolfi D (2007) Equilibrium and disequilibrium degassing of a phonolitic melt (vesuvius AD 79 "white pumice") simulated by decompression experiments. J Volcanol Geotherm Res 161:151–164

    Article  Google Scholar 

  • IAPWS (1997) Revised release on the IAPS formulation 1985 for the viscosity of ordinary water substance. International Association for the Properties of Water and Steam, Erlangen, 15

    Google Scholar 

  • Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1:32–41

    Article  Google Scholar 

  • Lensky NG, Lyakhovsky V, Navon O (2001) Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas. Earth Planet Sci Lett 186:1–6

    Article  Google Scholar 

  • Llewellin EW, Manga A (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217

    Article  Google Scholar 

  • Llewellin EW, Mader HM, Wilson SDR (2002) The rheology of a bubbly liquid. Proc R Soc Lond A 458:987–1016

    Article  Google Scholar 

  • Manga M, Loewenberg M (2001) Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 105:19–24

    Article  Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Amer Mineralog 83:36–42

    Google Scholar 

  • Mysen BO, Yamashita S, Chertkova N (2008) Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature-amine groups and hydrogen fugacity. Amer Mineralog 93:1760–1770

    Article  Google Scholar 

  • Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: formation of a channel-like bubble network. J Geophys Res. doi:10.1029/2007JB005362

    Google Scholar 

  • Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281:267–274

    Article  Google Scholar 

  • Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22:1341–1358

    Article  Google Scholar 

  • Rolandi G, Mastrolorenzo G, Barrella AM, Borrelli A (1993) The avellino plinian eruption of somma-vesuvius (3760 Y Bp)—the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geotherm Res 58:67–88

    Article  Google Scholar 

  • Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes to orientations. J Volcanol Geotherm Res 122:111–132

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Romano C (1999) Pre-eruptive volatile (H2O, F, Cl and S) contents of phonolitic magmas feeding the 3550-year old Avellino eruption from vesuvius, southern Italy. J Volcanol Geotherm Res 93:237–256

    Article  Google Scholar 

  • Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Bohler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. Dev X-Ray Tomogr V 6318:U199–U212

    Google Scholar 

  • Stasiuk MV, Barclay J, Carroll MR, Jaupart C, Ratte JC, Sparks RSJ, Tait SR (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58:117–130

    Article  Google Scholar 

  • Terzaghi K (1945) Stress conditions for the failure of saturated concrete and rock. Proc Am Soc Test Mater 45:777–792

    Google Scholar 

  • Thomas ME, Petford N, Bromhead EN (2004) Volcanic rock-mass properties from Snowdonia to Tenerife: implications for volcano edifice strength. J Geol Soc 161:939–946

    Article  Google Scholar 

  • Tuffen H, Dingwell DB (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092

    Article  Google Scholar 

  • Yoshimura S, Nakamura M (2008) Diffusive dehydration and bubble resorption during open-system degassing of rhyolitic melts. J Volcanol Geotherm Res 178:72–80

    Article  Google Scholar 

  • Zhang YX, Stolper EM, Wasserburg GJ (1991) Diffusion of water in rhyolitic glasses. Geochim Cosmochim Acta 55:441–456

    Article  Google Scholar 

Download references

Acknowledgements

This project was financed by an INSU grant and the Electrovolc project, which is funded by the French national agency for research (ANR): contract JC05-42707 to Fabrice Gaillard and by the NERC grant (NE/G012946/1) to Luca Caricchi. We are grateful to the local contacts Peter Modregger and Federica Marone at Swiss Light Source to make possible the x-ray tomography experiments and for their help with the 3D reconstructions and data treatment. The scientific discussions with Fabrice Gaillard, Remi Champallier, Alison Rust and the technical support of Philip Teulat were greatly appreciated. The comments of Satoshi Okumura and two anonymous reviewers greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Caricchi.

Additional information

Editorial responsibility: D. Dingwell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caricchi, L., Pommier, A., Pistone, M. et al. Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts. Bull Volcanol 73, 1245–1257 (2011). https://doi.org/10.1007/s00445-011-0471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0471-2

Keywords

Navigation