Skip to main content
Log in

Sizeable θ 13 from the charged lepton sector in SU(5), (tri-)bimaximal neutrino mixing and Dirac CP violation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The recent results from T2K and MINOS experiments point towards a relatively large value of the reactor angle θ 13 in the lepton sector. In this paper we show how a large θ 13 can arise from the charged lepton sector alone in the context of an SU(5) GUT. In such a scenario (tri-)bimaximal mixing in the neutrino sector is still a viable possibility. We also analyse the general implications of the considered scenario for the searches of CP violation in neutrino oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [ INSPIRE].

    Article  ADS  Google Scholar 

  2. K. Nakamura and S.T. Petcov, Neutrino mass, mixing, and oscillations, in Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [ INSPIRE].

    ADS  Google Scholar 

  3. MINOS collaboration, L. Whitehead, New results on muon neutrino to electron neutrino oscillations in MINOS, talk given at Joint Experimental-Theoretical Seminar, Fermilab U.S.A., 24 June 2011, http://theory.fnal.gov/jetp/ and http://www-numi.fnal.gov/pr_plots/.

  4. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [ INSPIRE].

    ADS  Google Scholar 

  5. E. Molinaro and S.T. Petcov, A case of subdominant/suppressed ‘high energy’ contribution to the baryon asymmetry of the universe in flavoured leptogenesis, Phys. Lett. B 671 (2009) 60 [arXiv:0808.3534] [ INSPIRE].

    ADS  Google Scholar 

  6. Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: a search for the neutrino mixing angle θ 13, hep-ex/0606025 [ INSPIRE].

  7. Daya Bay Reactor Neutrino Experiment, http://dayawane.ihep.ac.cn/.

  8. RENO collaboration, J. Ahn et al., RENO: an experiment for neutrino oscillation parameter θ 13 using reactor neutrinos at Yonggwang, arXiv:1003.1391 [ INSPIRE].

  9. J. Bernabéu, S. Palomares Ruiz and S.T. Petcov, Atmospheric neutrino oscillations, θ 13 and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [ INSPIRE].

    Article  ADS  Google Scholar 

  10. S.T. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [ INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Gandhi et al., Mass hierarchy determination via future atmospheric neutrino detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [ INSPIRE].

    ADS  Google Scholar 

  12. S.T. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [ INSPIRE].

    ADS  Google Scholar 

  13. S. Choubey, S.T. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [ INSPIRE].

    ADS  Google Scholar 

  14. P. Ghoshal and S.T. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [ INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Pascoli, S.T. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [ INSPIRE].

    ADS  Google Scholar 

  16. S. Pascoli, S.T. Petcov and A. Riotto, Leptogenesis and low energy CP-violation in neutrino physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [ INSPIRE].

    Article  ADS  Google Scholar 

  17. S.T. Petcov, On pseudoDirac neutrinos, neutrino oscillations and neutrinoless double beta decay, Phys. Lett. B 110 (1982) 245 [ INSPIRE].

    ADS  Google Scholar 

  18. F. Vissani, A study of the scenario with nearly degenerate Majorana neutrinos, hep-ph/9708483 [ INSPIRE].

  19. V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [ INSPIRE].

    ADS  Google Scholar 

  20. A.J. Baltz, A.S. Goldhaber and M. Goldhaber, The solar neutrino puzzle: an oscillation solution with maximal neutrino mixing, Phys. Rev. Lett. 81 (1998) 5730 [hep-ph/9806540] [ INSPIRE].

    Article  ADS  Google Scholar 

  21. H. Georgi and S.L. Glashow, Neutrinos on earth and in the heavens, Phys. Rev. D 61 (2000) 097301 [hep-ph/9808293] [ INSPIRE].

    ADS  Google Scholar 

  22. I. Stancu and D.V. Ahluwalia, L/E flatness of the electron-like event ratio in super-Kamiokande and a degeneracy in neutrino masses, Phys. Lett. B 460 (1999) 431 [hep-ph/9903408] [ INSPIRE].

    ADS  Google Scholar 

  23. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [ INSPIRE].

    ADS  Google Scholar 

  24. P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [ INSPIRE].

    ADS  Google Scholar 

  25. Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [ INSPIRE].

    ADS  Google Scholar 

  26. X.G. He and A. Zee, Some simple mixing and mass matrices for neutrinos, Phys. Lett. B 560 (2003) 87 [hep-ph/0301092] [ INSPIRE].

    ADS  Google Scholar 

  27. L. Wolfenstein, Oscillations among three neutrino types and CP-violation, Phys. Rev. D 18 (1978) 958 [ INSPIRE].

    ADS  Google Scholar 

  28. P.H. Frampton, S.T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino mixing, Nucl. Phys. B 687 (2004) 31 [hep-ph/0401206] [ INSPIRE].

    Article  ADS  Google Scholar 

  29. S.T. Petcov and W. Rodejohann, Flavor symmetry L e  − L μ  − L τ , atmospheric neutrino mixing and CP-violation in the lepton sector, Phys. Rev. D 71 (2005) 073002 [hep-ph/0409135] [ INSPIRE].

    ADS  Google Scholar 

  30. A. Romanino, Charged lepton contributions to the solar neutrino mixing and θ 13, Phys. Rev. D 70 (2004) 013003 [hep-ph/0402258] [ INSPIRE].

    ADS  Google Scholar 

  31. K.A. Hochmuth, S.T. Petcov and W. Rodejohann, UPMNS = U U ν , Phys. Lett. B 654 (2007) 177 [arXiv:0706.2975] [ INSPIRE].

    ADS  Google Scholar 

  32. S. Goswami, S.T. Petcov, S. Ray and W. Rodejohann, Large U e3 and tri-bimaximal mixing, Phys. Rev. D 80 (2009) 053013 [arXiv:0907.2869] [ INSPIRE].

    ADS  Google Scholar 

  33. Y.H. Ahn, H.-Y. Cheng and S. Oh, Quark-lepton complementarity and tribimaximal neutrino mixing from discrete symmetry, Phys. Rev. D 83 (2011) 076012 [arXiv:1102.0879] [ INSPIRE].

    ADS  Google Scholar 

  34. J.A. Escobar, Flavor ∆(54) in SU(5) SUSY model, arXiv:1102.1649 [ INSPIRE].

  35. S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 symmetry prediction for the leptonic Dirac CP phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [ INSPIRE].

    ADS  Google Scholar 

  36. D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [ INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [ INSPIRE].

    ADS  Google Scholar 

  38. T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with μ greater than 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [ INSPIRE].

    Article  ADS  Google Scholar 

  39. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: a go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [ INSPIRE].

    ADS  Google Scholar 

  40. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T , JHEP 02 (2010) 055 [arXiv:0911.4739] [ INSPIRE].

    Article  ADS  Google Scholar 

  41. I. Gogoladze, R. Khalid and Q. Shafi, Yukawa unification and neutralino dark matter in SU(4) c  × SU(2) L  × SU(2) R , Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [ INSPIRE].

    ADS  Google Scholar 

  42. I. Gogoladze, S. Raza and Q. Shafi, Light stop from b-τ Yukawa unification, arXiv:1104.3566 [ INSPIRE].

  43. S. Dar, I. Gogoladze, Q. Shafi and C.S. Un, Sparticle spectroscopy with neutralino dark matter from t-b-τ quasi-Yukawa unification, arXiv:1105.5122 [ INSPIRE].

  44. S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [ INSPIRE].

    ADS  Google Scholar 

  45. S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [ INSPIRE].

    ADS  Google Scholar 

  46. S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [ INSPIRE].

    ADS  Google Scholar 

  47. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [ INSPIRE].

    ADS  Google Scholar 

  48. M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, CP violation in Majorana neutrinos, Phys. Lett. B 102 (1981) 323 [ INSPIRE].

    ADS  Google Scholar 

  49. P.I. Krastev and S.T. Petcov, Resonance amplification and t violation effects in three neutrino oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [ INSPIRE].

    ADS  Google Scholar 

  50. C. Jarlskog, A basis independent formulation of the connection between quark mass matrices, CP-violation and experiment, Z. Phys. C 29 (1985) 491 [ INSPIRE].

    ADS  Google Scholar 

  51. C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [ INSPIRE].

    Article  ADS  Google Scholar 

  52. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [ INSPIRE].

    ADS  Google Scholar 

  53. M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [ INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [ INSPIRE].

    ADS  Google Scholar 

  55. T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan β regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [ INSPIRE].

    ADS  Google Scholar 

  56. H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [ INSPIRE].

    ADS  Google Scholar 

  57. Z.-z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [ INSPIRE].

    ADS  Google Scholar 

  58. H. Leutwyler, Nonlattice determinations of the light quark masses, Nucl. Phys. Proc. Suppl. 94 (2001) 108 [hep-ph/0011049] [ INSPIRE].

    Article  ADS  Google Scholar 

  59. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [ INSPIRE].

    ADS  Google Scholar 

  60. G. Altarelli, F. Feruglio and I. Masina, Can neutrino mixings arise from the charged lepton sector?, Nucl. Phys. B 689 (2004) 157 [hep-ph/0402155] [ INSPIRE].

    Article  ADS  Google Scholar 

  61. S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [ INSPIRE].

    Article  ADS  Google Scholar 

  62. I. Masina, A maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [ INSPIRE].

    ADS  Google Scholar 

  63. S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [ INSPIRE].

    ADS  Google Scholar 

  64. S. Antusch, P. Huber, S.F. King and T. Schwetz, Neutrino mixing sum rules and oscillation experiments, JHEP 04 (2007) 060 [hep-ph/0702286] [ INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Bernabeu et al., EURONU WP6 2009 yearly report: update of the physics potential of Nufact, superbeams and betabeams, arXiv:1005.3146 [ INSPIRE].

  66. S. Antusch and V. Maurer, Large θ MNS13 and quark-lepton mass ratios in unified flavour models, arXiv:1107.3728 [ INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Marzocca.

Additional information

ArXiv ePrint: 1108.0614

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzocca, D., Petcov, S.T., Romanino, A. et al. Sizeable θ 13 from the charged lepton sector in SU(5), (tri-)bimaximal neutrino mixing and Dirac CP violation. J. High Energ. Phys. 2011, 9 (2011). https://doi.org/10.1007/JHEP11(2011)009

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)009

Keywords

Navigation