Skip to main content
Log in

New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass — such as in extra-dimensional models — because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Feldman, B. Körs and P. Nath, Extra-weakly interacting dark matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [SPIRES].

    ADS  Google Scholar 

  2. D. Feldman, Z. Liu and P. Nath, The Stückelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [SPIRES].

    ADS  Google Scholar 

  3. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES].

    ADS  Google Scholar 

  4. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  5. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].

    ADS  Google Scholar 

  6. D. Feldman, Z. Liu and P. Nath, PAMELA positron excess as a signal from the hidden sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [SPIRES].

    ADS  Google Scholar 

  7. P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [SPIRES].

    ADS  Google Scholar 

  8. E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [SPIRES].

    ADS  Google Scholar 

  9. R. Allahverdi, B. Dutta, K. Richardson-McDaniel and Y. Santoso, A supersymmetric B-L dark matter model and the observed anomalies in the cosmic rays, Phys. Rev. D 79 (2009) 075005 [arXiv:0812.2196] [SPIRES].

    ADS  Google Scholar 

  10. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [SPIRES].

    ADS  Google Scholar 

  11. D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].

    Article  ADS  Google Scholar 

  12. J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden charged dark matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [SPIRES].

    ADS  Google Scholar 

  13. D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent dark matter in supersymmetric hidden sector extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [SPIRES].

    ADS  Google Scholar 

  14. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].

    ADS  Google Scholar 

  15. R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].

    ADS  Google Scholar 

  16. M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [SPIRES].

    Article  ADS  Google Scholar 

  17. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].

    ADS  Google Scholar 

  18. E.D. Carlson, Limits on a new U(1) coupling, Nucl. Phys. B 286 (1987) 378 [SPIRES].

    Article  ADS  Google Scholar 

  19. R. Foot, G.C. Joshi and H. Lew, Gauged baryon and lepton numbers, Phys. Rev. D 40 (1989) 2487 [SPIRES].

    ADS  Google Scholar 

  20. D.C. Bailey and S. Davidson, Is there a vector boson coupling to baryon number?, Phys. Lett. B 348 (1995) 185 [hep-ph/9411355] [SPIRES].

    ADS  Google Scholar 

  21. S. Davidson and M.E. Peskin, Astrophysical bounds on millicharged particles in models with a paraphoton, Phys. Rev. D 49 (1994) 2114 [hep-ph/9310288] [SPIRES].

    ADS  Google Scholar 

  22. H. Gies, J. Jaeckel and A. Ringwald, Polarized light propagating in a magnetic field as a probe of millicharged fermions, Phys. Rev. Lett. 97 (2006) 140402 [hep-ph/0607118] [SPIRES].

    Article  ADS  Google Scholar 

  23. H. Gies, J. Jaeckel and A. Ringwald, Accelerator cavities as a probe of millicharged particles, Europhys. Lett. 76 (2006) 794 [hep-ph/0608238] [SPIRES].

    Article  ADS  Google Scholar 

  24. S.N. Gninenko, N.V. Krasnikov and A. Rubbia, Search for millicharged particles in reactor neutrino experiments: a probe of the PVLAS anomaly, Phys. Rev. D 75 (2007) 075014 [hep-ph/0612203] [SPIRES].

    ADS  Google Scholar 

  25. J. Redondo and A. Ringwald, Light shining through walls, arXiv:1011.3741 [SPIRES].

  26. J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [SPIRES].

    Article  ADS  Google Scholar 

  27. M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [SPIRES].

    Article  ADS  Google Scholar 

  28. W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev. D 74 (2006) 095005 [hep-ph/0608068] [SPIRES].

    ADS  Google Scholar 

  29. J. Kumar and J.D. Wells, LHC and ILC probes of hidden-sector gauge bosons, Phys. Rev. D 74 (2006) 115017 [hep-ph/0606183] [SPIRES].

    ADS  Google Scholar 

  30. L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark matter and dark radiation, Phys. Rev. D 79 (2009) 023519 [arXiv:0810.5126] [SPIRES].

    ADS  Google Scholar 

  31. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [SPIRES].

    ADS  Google Scholar 

  32. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].

    ADS  Google Scholar 

  33. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [SPIRES].

    ADS  Google Scholar 

  34. A. Mirizzi, J. Redondo and G. Sigl, Microwave background constraints on mixing of photons with hidden photons, JCAP 03 (2009) 026 [arXiv:0901.0014] [SPIRES].

    ADS  Google Scholar 

  35. P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [SPIRES].

    Article  ADS  Google Scholar 

  36. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [SPIRES].

    Article  ADS  Google Scholar 

  37. E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. J.D. Lykken, Weak scale superstrings, Phys. Rev. D 54 (1996) 3693 [hep-th/9603133] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  39. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  40. K. Benakli, Phenomenology of low quantum gravity scale models, Phys. Rev. D 60 (1999) 104002 [hep-ph/9809582] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  41. C.P. Burgess, L.E. Ibáñez and F. Quevedo, Strings at the intermediate scale or is the Fermi scale dual to the Planck scale?, Phys. Lett. B 447 (1999) 257 [hep-ph/9810535] [SPIRES].

    ADS  Google Scholar 

  42. I. Antoniadis and K. Benakli, Large dimensions and string physics in future colliders, Int. J. Mod. Phys. A 15 (2000) 4237 [hep-ph/0007226] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  43. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  44. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].

    ADS  Google Scholar 

  45. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, SUSY breaking and moduli stabilization from fluxes in gauged 6D supergravity, JHEP 03 (2003) 032 [hep-th/0212091] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  48. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. L.E. Ibáñez and F. Quevedo, Anomalous U(1)’s and proton stability in brane models, JHEP 10 (1999) 001 [hep-ph/9908305] [SPIRES].

    Article  ADS  Google Scholar 

  50. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  51. T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. C.P. Burgess et al., Continuous global symmetries and hyperweak interactions in string compactifications, JHEP 07 (2008) 073 [arXiv:0805.4037] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  53. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  55. C.P. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [SPIRES].

    Article  ADS  Google Scholar 

  56. C.P. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [SPIRES].

    Article  ADS  Google Scholar 

  57. S. Weinberg, Feynman rules for any spin, Phys. Rev. 133 (1964) 1318.

    Article  ADS  MathSciNet  Google Scholar 

  58. S. Weinberg, Feynman rules for any spin: II massless particles, Phys. Rev. 134 (1964) 882.

    Article  ADS  MathSciNet  Google Scholar 

  59. S. Weinberg, Feynman rules for any spin. III, Phys. Rev. 181 (1969) 1893 [SPIRES].

    Article  ADS  Google Scholar 

  60. S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) 1049.

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) 988.

    Article  ADS  MathSciNet  Google Scholar 

  62. S. Deser, Self-interaction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96 (1980) 59 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  64. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [SPIRES].

    Article  ADS  Google Scholar 

  65. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [SPIRES].

    ADS  Google Scholar 

  66. J. Preskill, Gauge anomalies in an effective field theory, Ann. Phys. 210 (1991) 323 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  67. C.P. Burgess and D. London, On anomalous gauge boson couplings and loop calculations, Phys. Rev. Lett. 69 (1992) 3428 [SPIRES].

    Article  ADS  Google Scholar 

  68. C.P. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev. D 48 (1993) 4337 [hep-ph/9203216] [SPIRES].

    ADS  Google Scholar 

  69. S. Weinberg, Quantum theory of fields, vol. I, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  70. C.P. Burgess, Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [SPIRES].

    Google Scholar 

  71. C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [SPIRES].

    Article  ADS  Google Scholar 

  72. C.P. Burgess and G. Moore, The standard model: a primer, Cambridge University Press, Cambridge U.K. (2007).

    MATH  Google Scholar 

  73. M.C. Gonzalez-Garcia and Y. Nir, Developments in neutrino physics, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [SPIRES].

    Article  ADS  Google Scholar 

  74. M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].

    Article  ADS  Google Scholar 

  75. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].

    Article  ADS  Google Scholar 

  76. C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 4 (2001) 4 [gr-qc/0103036] [SPIRES].

    MathSciNet  Google Scholar 

  77. C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9 (2005) 3 [gr-qc/0510072] [SPIRES].

    Google Scholar 

  78. E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse-square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [SPIRES].

    Article  ADS  Google Scholar 

  79. C.D. Hoyle et al., Sub-millimeter tests of the gravitational inverse-square law, Phys. Rev. D 70 (2004) 042004 [hep-ph/0405262] [SPIRES].

    ADS  Google Scholar 

  80. J.A. Harvey and S.G. Naculich, Cosmic strings from pseudoanomalous U(1)’s, Phys. Lett. B 217 (1989) 231 [SPIRES].

    ADS  Google Scholar 

  81. M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  82. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  83. M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  84. C.P. Burgess, A. Maharana and F. Quevedo, Uber-naturalness: unexpectedly light scalars from supersymmetric extra dimensions, JHEP 05 (2011) 010 [arXiv:1005.1199] [SPIRES].

    Article  ADS  Google Scholar 

  85. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].

    Article  ADS  Google Scholar 

  86. F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43 (1979) 1571 [SPIRES].

    Article  ADS  Google Scholar 

  87. H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [SPIRES].

    Article  ADS  Google Scholar 

  88. H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Ann. Phys. 93 (1975) 193 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  89. F. Gursey, P. Ramond and P. Sikivie, A universal gauge theory model based on E 6, Phys. Lett. B 60 (1976) 177 [SPIRES].

    ADS  Google Scholar 

  90. P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [SPIRES].

    Article  ADS  Google Scholar 

  91. G.G. Ross, Grand unified theories, Benjamin/Cummings, Reading U.S.A. (1984).

    Google Scholar 

  92. H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six-dimensions, Phys. Lett. B 144 (1984) 187 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  93. H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  94. S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  95. M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  96. J. Erler, Anomaly cancellation in six-dimensions, J. Math. Phys. 35 (1994) 1819 [hep-th/9304104] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  97. A. Salam and E. Sezgin, Chiral compactification on Minkowski × S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  98. C.P. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [SPIRES].

    Article  ADS  Google Scholar 

  99. C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [SPIRES].

    Article  ADS  Google Scholar 

  100. L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [SPIRES].

    Article  ADS  Google Scholar 

  101. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  102. D.M. Ghilencea, L.E. Ibáñez, N. Irges and F. Quevedo, TeV-Scale Z′ bosons from D-branes, JHEP 08 (2002) 016 [hep-ph/0205083] [SPIRES].

    Article  ADS  Google Scholar 

  103. D.M. Ghilencea, U(1) masses in intersecting D-brane SM-like models, Nucl. Phys. B 648 (2003) 215 [hep-ph/0208205] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  104. J.P. Conlon, A. Maharana and F. Quevedo, Towards realistic string vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  105. M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  106. D. Berenstein and S. Pinansky, The minimal quiver standard model, Phys. Rev. D 75 (2007) 095009 [hep-th/0610104] [SPIRES].

    ADS  Google Scholar 

  107. D. Berenstein, R. Martinez, F. Ochoa and S. Pinansky, Z-prime boson detection in the minimal quiver standard model, Phys. Rev. D 79 (2009) 095005 [arXiv:0807.1126] [SPIRES].

    ADS  Google Scholar 

  108. E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z′ models: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [SPIRES].

    Article  ADS  Google Scholar 

  109. E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Z′ models: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [SPIRES].

    Article  ADS  Google Scholar 

  110. C. Corianò’, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys. B 746 (2006) 77 [hep-ph/0510332] [SPIRES].

    Article  ADS  Google Scholar 

  111. M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [SPIRES].

    Article  ADS  Google Scholar 

  112. D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling parity and SU(2) R breaking scales: a new approach to left-right symmetric models, Phys. Rev. Lett. 52 (1984) 1072 [SPIRES].

    Article  ADS  Google Scholar 

  113. D. Chang, R.N. Mohapatra, J. Gipson, R.E. Marshak and M.K. Parida, Experimental tests of new SO(10) grand unification, Phys. Rev. D 31 (1985) 1718 [SPIRES].

    ADS  Google Scholar 

  114. R.W. Robinett and J.L. Rosner, Prospects for a second neutral vector boson at low mass in SO(10), Phys. Rev. D 25 (1982) 3036 [Erratum ibid. 27 (1983) 679] [SPIRES].

    ADS  Google Scholar 

  115. P. Langacker, R.W. Robinett and J.L. Rosner, New heavy gauge bosons in pp and \( p\bar{p} \) collisions, Phys. Rev. D 30 (1984) 1470 [SPIRES].

    ADS  Google Scholar 

  116. Q. Shafi, E 6 as a unifying gauge symmetry, Phys. Lett. B 79 (1978) 301 [SPIRES].

    ADS  Google Scholar 

  117. R. Barbieri and D.V. Nanopoulos, An exceptional model for grand unification, Phys. Lett. B 91 (1980) 369 [SPIRES].

    ADS  Google Scholar 

  118. F. Gursey and M. Serdaroglu, E 6 gauge field theory model revisited, Nuovo Cim. A 65 (1981) 337 [SPIRES].

    Article  ADS  Google Scholar 

  119. V.D. Barger, N.G. Deshpande and K. Whisnant, Phenomenological mass limits on extra Z of E 6 superstrings, Phys. Rev. Lett. 56 (1986) 30 [SPIRES].

    Article  ADS  Google Scholar 

  120. D. London and J.L. Rosner, Extra gauge bosons in E 6, Phys. Rev. D 34 (1986) 1530 [SPIRES].

    ADS  Google Scholar 

  121. F. del Aguila, M. Quirós and F. Zwirner, Detecting E 6 neutral gauge bosons through lepton pairs at hadron colliders, Nucl. Phys. B 287 (1987) 419 [SPIRES].

    Article  ADS  Google Scholar 

  122. A. Font, L.E. Ibáñez and F. Quevedo, Does proton stability imply the existence of an extra Z 0 ?, Phys. Lett. B 228 (1989) 79 [SPIRES].

    ADS  Google Scholar 

  123. J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [SPIRES].

    Article  ADS  Google Scholar 

  124. K.R. Dienes, String theory and the path to unification: a review of recent developments, Phys. Rept. 287 (1997) 447 [hep-th/9602045] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  125. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].

    ADS  Google Scholar 

  126. X. Li and R.E. Marshak, Low-energy phenomenology and neutral weak boson masses in the SU(2) L  × SU(2) R  × U(1) BL electroweak model, Phys. Rev. D 25 (1982) 1886 [SPIRES].

    ADS  Google Scholar 

  127. M.S. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z-prime gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [SPIRES].

    ADS  Google Scholar 

  128. B. Holdom, Oblique electroweak corrections and an extra gauge boson, Phys. Lett. B 259 (1991) 329 [SPIRES].

    ADS  Google Scholar 

  129. K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z Z’ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [SPIRES].

    ADS  Google Scholar 

  130. A. Leike, The phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [SPIRES].

    Article  ADS  Google Scholar 

  131. A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, arXiv:1006.0973 [SPIRES].

  132. J. Erler, P. Langacker, S. Munir and E.R. Pena, Improved constraints on Z′ bosons from electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [SPIRES].

    Article  ADS  Google Scholar 

  133. J.D. Wells, How to find a hidden world at the Large Hadron Collider, arXiv:0803.1243 [SPIRES].

  134. D0 collaboration, S. Abachi et al., Search for additional neutral gauge bosons, Phys. Lett. B 385 (1996) 471 [SPIRES].

    ADS  Google Scholar 

  135. C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [SPIRES].

    ADS  Google Scholar 

  136. K.T. Mahanthappa and P.K. Mohapatra, Limits on mixing angle and mass of Z-prime using Delta rho and atomic parity violation, Phys. Rev. D 43 (1991) 3093 [SPIRES].

    ADS  Google Scholar 

  137. A.E. Faraggi and D.V. Nanopoulos, A superstring Z-prime at O(1 TeV)?, Mod. Phys. Lett. A 6 (1991) 61 [SPIRES].

    ADS  Google Scholar 

  138. J.L. Lopez and D.V. Nanopoulos, New bounds on primordial nucleosynthesis in the presence of a cornered Z-prime, Phys. Lett. B 241 (1990) 392 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  139. S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and dark matter constraints on a Z′ in models with a hidden valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [SPIRES].

    Article  ADS  Google Scholar 

  140. C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Bounding anomalous gauge boson couplings, Phys. Rev. D 50 (1994) 7011 [hep-ph/9307223] [SPIRES].

    ADS  Google Scholar 

  141. P. Bamert, C.P. Burgess, J.M. Cline, D. London and E. Nardi, R(b) and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [SPIRES].

    ADS  Google Scholar 

  142. C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [SPIRES].

    ADS  Google Scholar 

  143. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [SPIRES].

    ADS  Google Scholar 

  144. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  145. I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [SPIRES].

    ADS  Google Scholar 

  146. C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [SPIRES].

    ADS  Google Scholar 

  147. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  148. E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [SPIRES].

    Article  ADS  Google Scholar 

  149. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  150. CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [SPIRES].

    ADS  Google Scholar 

  151. L.A. Ahrens et al., Determination of electroweak parameters from the elastic scattering of muon-neutrinos and anti-neutrinos on electrons, Phys. Rev. D 41 (1990) 3297 [SPIRES].

    ADS  Google Scholar 

  152. G. Radel and R. Beyer, Neutrino electron scattering, Mod. Phys. Lett. A 8 (1993) 1067 [SPIRES].

    ADS  Google Scholar 

  153. A. de Gouvêa and J. Jenkins, What can we learn from neutrino electron scattering?, Phys. Rev. D 74 (2006) 033004 [hep-ph/0603036] [SPIRES].

    ADS  Google Scholar 

  154. CDF collaboration, T. Aaltonen et al., Search for new physics in high mass electron-positron events in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 99 (2007) 171802 [arXiv:0707.2524] [SPIRES].

    Article  ADS  Google Scholar 

  155. E.A. Paschos and L. Wolfenstein, Tests for neutral currents in neutrino reactions, Phys. Rev. D 7 (1973) 91 [SPIRES].

    ADS  Google Scholar 

  156. NuTeV collaboration, G.P. Zeller et al., A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [hep-ex/0110059] [SPIRES].

    Article  ADS  Google Scholar 

  157. BABAR collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [SPIRES].

    Article  ADS  Google Scholar 

  158. R. Barbieri and T.E.O. Ericson, Evidence against the existence of a low mass scalar boson from neutron-nucleus scattering, Phys. Lett. B 57 (1975) 270 [SPIRES].

    ADS  Google Scholar 

  159. V. Barger, C.-W. Chiang, W.-Y. Keung and D. Marfatia, Proton size anomaly, Phys. Rev. Lett. 106 (2011) 153001 [arXiv:1011.3519] [SPIRES].

    Article  ADS  Google Scholar 

  160. C. Bouchiat and P. Fayet, Constraints on the parity-violating couplings of a new gauge boson, Phys. Lett. B 608 (2005) 87 [hep-ph/0410260] [SPIRES].

    ADS  Google Scholar 

  161. R.H. Cyburt, B.D. Fields, K.A. Olive and E. Skillman, New BBN limits on physics beyond the standard model from 4 He, Astropart. Phys. 23 (2005) 313 [astro-ph/0408033] [SPIRES].

    Article  ADS  Google Scholar 

  162. J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Williams.

Additional information

ArXiv ePrint: hep-ph/1103.4556

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M., Burgess, C.P., Maharana, A. et al. New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range. J. High Energ. Phys. 2011, 106 (2011). https://doi.org/10.1007/JHEP08(2011)106

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)106

Keywords

Navigation