Skip to main content
Log in

Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale ρ ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry-breaking scale ρ −2. We find that the transverse momentum distribution of valence quarks is localized at \( p_T^2\sim {R^{-2 }} \) and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~ \( {1 \left/ {{p_T^2}} \right.} \) extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon’s light-cone wave function, which are analogous to short-range N N correlations in nuclei. We show that the nucleon’s light-cone wave function contains correlated pairs of transverse size ρ ≪ R with scalar-isoscalar (Σ) and pseudoscalar-isovector (Π) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at \( p_T^2\sim {\rho^{-2 }} \) (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon’s partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard scattering processes. Under certain conditions the nonperturbative parton correlations predicted here could be observed in particle correlations between the current and target fragmentation regions of deep-inelastic scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders and M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.K. Ellis, W. Furmanski and R. Petronzio, Power Corrections to the Parton Model in QCD, Nucl. Phys. B 207 (1982) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  3. R.K. Ellis, W. Furmanski and R. Petronzio, Unraveling Higher Twists, Nucl. Phys. B 212 (1983) 29 [INSPIRE].

    ADS  Google Scholar 

  4. J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. Badelek, J. Kwiecinski and A. Stasto, A Model for F L and R = F L /F T at low x and low Q 2, Z. Phys. C 74 (1997) 297 [hep-ph/9603230] [INSPIRE].

    Google Scholar 

  6. Y.L. Dokshitzer, D. Diakonov and S. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Kimber, A.D. Martin and M. Ryskin, Unintegrated parton distributions and prompt photon hadroproduction, Eur. Phys. J. C 12 (2000) 655 [hep-ph/9911379] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Kimber, A.D. Martin and M. Ryskin, Unintegrated parton distributions, Phys. Rev. D 63 (2001) 114027 [hep-ph/0101348] [INSPIRE].

    ADS  Google Scholar 

  9. G. Martinelli and C.T. Sachrajda, On the difficulty of computing higher twist corrections, Nucl. Phys. B 478 (1996) 660 [hep-ph/9605336] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.-w. Qiu and G.F. Sterman, Single transverse spin asymmetries, Phys. Rev. Lett. 67 (1991) 2264 [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].

  12. X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].

    ADS  Google Scholar 

  13. X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett. B 597 (2004) 299 [hep-ph/0405085] [INSPIRE].

    ADS  Google Scholar 

  14. J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Bacchetta, D. Boer, M. Diehl and P.J. Mulders, Matches and mismatches in the descriptions of semi-inclusive processes at low and high transverse momentum, JHEP 08 (2008) 023 [arXiv:0803.0227] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Collins, New definition of TMD parton densities, Int. J. Mod. Phys. Conf. Ser. 4 (2011) 85 [arXiv:1107.4123] [INSPIRE].

    Article  Google Scholar 

  17. J.C. Collins and F. Hautmann, Infrared divergences and nonlightlike eikonal lines in Sudakov processes, Phys. Lett. B 472 (2000) 129 [hep-ph/9908467] [INSPIRE].

    ADS  Google Scholar 

  18. J.C. Collins and F. Hautmann, Soft gluons and gauge invariant subtractions in NLO parton shower Monte Carlo event generators, JHEP 03 (2001) 016 [hep-ph/0009286] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.C. Collins, What exactly is a parton density?, Acta Phys. Polon. B 34 (2003) 3103 [hep-ph/0304122] [INSPIRE].

    ADS  Google Scholar 

  20. J.C. Collins, Foundations of Perturbative QCD, Cambridge monographs on particle physics, nuclear physics and cosmology no. 32, Cambridge University Press, Cambridge, U.K. (2011).

  21. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  23. S.M. Aybat and T.C. Rogers, TMD Parton Distribution and Fragmentation Functions with QCD Evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].

    ADS  Google Scholar 

  24. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

    ADS  Google Scholar 

  26. S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  27. S. Mantry and F. Petriello, Transverse Momentum Distributions in the Non-Perturbative Region, Phys. Rev. D 84 (2011) 014030 [arXiv:1011.0757] [INSPIRE].

    ADS  Google Scholar 

  28. M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q T And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.C. Collins and T.C. Rogers, Equality of Two Definitions for Transverse Momentum Dependent Parton Distribution Functions, arXiv:1210.2100 [INSPIRE].

  30. T. Gehrmann, T. Lubbert and L.L. Yang, Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case, arXiv:1209.0682 [INSPIRE].

  31. I. Cherednikov and N. Stefanis, Renormalization, Wilson lines and transverse-momentum dependent parton distribution functions, Phys. Rev. D 77 (2008) 094001 [arXiv:0710.1955] [INSPIRE].

    ADS  Google Scholar 

  32. I. Cherednikov and N. Stefanis, Wilson lines and transverse-momentum dependent parton distribution functions: A Renormalization-group analysis, Nucl. Phys. B 802 (2008) 146 [arXiv:0802.2821] [INSPIRE].

    Article  ADS  Google Scholar 

  33. I. Cherednikov, A. Karanikas and N. Stefanis, Wilson lines in transverse-momentum dependent parton distribution functions with spin degrees of freedom, Nucl. Phys. B 840 (2010) 379 [arXiv:1004.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

    ADS  Google Scholar 

  35. S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Kremer and G. Schierholz, Calculation of the quark spin glue (\( \overline{q}\sigma qG \)) condensate on the lattice, Phys. Lett. B 194 (1987) 283 [INSPIRE].

    ADS  Google Scholar 

  37. T.-W. Chiu and T.-H. Hsieh, Light quark masses, chiral condensate and quark gluon condensate in quenched lattice QCD with exact chiral symmetry, Nucl. Phys. B 673 (2003) 217 [hep-lat/0305016] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Doi, N. Ishii, M. Oka and H. Suganuma, The Quark gluon mixed condensate \( g\left\langle {\overline{q}{\sigma_{{\mu \nu }}}{G_{{\mu \nu }}}q} \right\rangle \) in SU(3) c quenched lattice QCD, Phys. Rev. D 67 (2003) 054504 [hep-lat/0211039] [INSPIRE].

    ADS  Google Scholar 

  39. M. Chu, J. Grandy, S. Huang and J.W. Negele, Evidence for the role of instantons in hadron structure from lattice QCD, Phys. Rev. D 49 (1994) 6039 [hep-lat/9312071] [INSPIRE].

    ADS  Google Scholar 

  40. J.W. Negele, Instantons, the QCD vacuum and hadronic physics, Nucl. Phys. Proc. Suppl. 73 (1999) 92 [hep-lat/9810053] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. D. Diakonov, Instantons at work, Prog. Part. Nucl. Phys. 51 (2003) 173 [hep-ph/0212026] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E.V. Shuryak, The Role of Instantons in Quantum Chromodynamics. 1. Physical Vacuum, Nucl. Phys. B 203 (1982) 93 [INSPIRE].

    Article  ADS  Google Scholar 

  43. E.V. Shuryak, The Role of Instantons in Quantum Chromodynamics. 2. Hadronic Structure, Nucl. Phys. B 203 (1982) 116 [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Diakonov and V.Y. Petrov, A Theory of Light Quarks in the Instanton Vacuum, Nucl. Phys. B 272 (1986) 457 [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Schafer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M.V. Polyakov and C. Weiss, Mixed quark-gluon condensate from instantons, Phys. Lett. B 387 (1996) 841 [hep-ph/9607244] [INSPIRE].

    ADS  Google Scholar 

  47. D. Diakonov and M.I. Eides, Chiral lagrangian from a functional integral over quarks, JETP Lett. 38 (1983) 433 [INSPIRE].

    ADS  Google Scholar 

  48. D. Diakonov, V.Y. Petrov and P. Pobylitsa, A Chiral Theory of Nucleons, Nucl. Phys. B 306 (1988) 809 [INSPIRE].

    Article  ADS  Google Scholar 

  49. C. Christov et al., Baryons as nontopological chiral solitons, Prog. Part. Nucl. Phys. 37 (1996) 91 [hep-ph/9604441] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. Diakonov, V. Petrov, P. Pobylitsa, M.V. Polyakov and C. Weiss, Nucleon parton distributions at low normalization point in the large-N c limit, Nucl. Phys. B 480 (1996) 341 [hep-ph/9606314] [INSPIRE].

    Article  ADS  Google Scholar 

  51. D. Diakonov, V.Y. Petrov, P. Pobylitsa, M.V. Polyakov and C. Weiss, Unpolarized and polarized quark distributions in the large-N c limit, Phys. Rev. D 56 (1997) 4069 [hep-ph/9703420] [INSPIRE].

    ADS  Google Scholar 

  52. M. Gluck, P. Jimenez-Delgado and E. Reya, Dynamical parton distributions of the nucleon and very small-x physics, Eur. Phys. J. C 53 (2008) 355 [arXiv:0709.0614] [INSPIRE].

    Article  ADS  Google Scholar 

  53. New Muon collaboration, P. Amaudruz et al., The Gottfried sum from the ratio \( {{{F_2^n}} \left/ {{F_2^p}} \right.} \) , Phys. Rev. Lett. 66 (1991) 2712 [INSPIRE].

    Article  ADS  Google Scholar 

  54. New Muon collaboration, M. Arneodo et al., A Reevaluation of the Gottfried sum, Phys. Rev. D 50 (1994) 1 [INSPIRE].

    ADS  Google Scholar 

  55. NA51 collaboration, A. Baldit et al., Study of the isospin symmetry breaking the in the light quark sea of the nucleon from the Drell-Yan process, Phys. Lett. B 332 (1994) 244 [INSPIRE].

    ADS  Google Scholar 

  56. FNAL E866/NuSea collaboration, E. Hawker et al., Measurement of the light anti-quark flavor asymmetry in the nucleon sea, Phys. Rev. Lett. 80 (1998) 3715 [hep-ex/9803011] [INSPIRE].

    Article  ADS  Google Scholar 

  57. FNAL E866/NuSea collaboration, R. Towell et al., Improved measurement of the \( {{\overline{d}} \left/ {\overline{u}} \right.} \) asymmetry in the nucleon sea, Phys. Rev. D 64 (2001) 052002 [hep-ex/0103030] [INSPIRE].

    ADS  Google Scholar 

  58. D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Global Analysis of Helicity Parton Densities and Their Uncertainties, Phys. Rev. Lett. 101 (2008) 072001 [arXiv:0804.0422] [INSPIRE].

    Article  ADS  Google Scholar 

  59. D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Extraction of Spin-Dependent Parton Densities and Their Uncertainties, Phys. Rev. D 80 (2009) 034030 [arXiv:0904.3821] [INSPIRE].

    ADS  Google Scholar 

  60. B. Dressler, K. Goeke, M.V. Polyakov, P. Schweitzer, M. Strikman and C. Weiss, Polarized anti-quark flavor asymmetry in Drell-Yan pair production, Eur. Phys. J. C 18 (2001) 719 [hep-ph/9910464] [INSPIRE].

    Article  ADS  Google Scholar 

  61. STAR collaboration, M. Aggarwal et al., Measurement of the parity-violating longitudinal single-spin asymmetry for W ± boson production in polarized proton-proton collisions at \( \sqrt{s}=500 \) – GeV, Phys. Rev. Lett. 106 (2011) 062002 [arXiv:1009.0326] [INSPIRE].

    Article  ADS  Google Scholar 

  62. PHENIX collaboration, A. Adare et al., Cross Section and Parity Violating Spin Asymmetries of W ± Boson Production in Polarized p + p Collisions at \( \sqrt{s}=500 \) GeV, Phys. Rev. Lett. 106 (2011) 062001 [arXiv:1009.0505] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Wakamatsu, Transverse momentum distributions of quarks in the nucleon from the Chiral Quark Soliton Model, Phys. Rev. D 79 (2009) 094028 [arXiv:0903.1886] [INSPIRE].

    ADS  Google Scholar 

  64. V.Y. Petrov and M. Polyakov, Light cone nucleon wave function in the quark soliton model, hep-ph/0307077 [INSPIRE].

  65. D. Diakonov and V. Petrov, Baryons as Fock states of 3,5,… quarks, Annalen Phys. 13 (2004) 637 [hep-ph/0409362] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. C. Lorce, Baryon vector and axial content up to the 7Q component, Phys. Rev. D 78 (2008) 034001 [arXiv:0708.3139] [INSPIRE].

    ADS  Google Scholar 

  67. L. Frankfurt and M. Strikman, High-Energy Phenomena, Short Range Nuclear Structure and QCD, Phys. Rept. 76 (1981) 215 [INSPIRE].

    Article  ADS  Google Scholar 

  68. L. Frankfurt, M. Sargsian and M. Strikman, Recent observation of short range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars, Int. J. Mod. Phys. A 23 (2008) 2991 [arXiv:0806.4412] [INSPIRE].

    ADS  Google Scholar 

  69. J. Arrington, D. Higinbotham, G. Rosner and M. Sargsian, Hard probes of short-range nucleon-nucleon correlations, Prog. Part. Nucl. Phys. 67 (2012) 898 [arXiv:1104.1196] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R. Jakob, P. Mulders and J. Rodrigues, Modeling quark distribution and fragmentation functions, Nucl. Phys. A 626 (1997) 937 [hep-ph/9704335] [INSPIRE].

    ADS  Google Scholar 

  71. L.P. Gamberg, G.R. Goldstein and K.A. Oganessyan, Novel transversity properties in semiinclusive deep inelastic scattering, Phys. Rev. D 67 (2003) 071504 [hep-ph/0301018] [INSPIRE].

    ADS  Google Scholar 

  72. L.P. Gamberg, G.R. Goldstein and M. Schlegel, Transverse Quark Spin Effects and the Flavor Dependence of the Boer-Mulders Function, Phys. Rev. D 77 (2008) 094016 [arXiv:0708.0324] [INSPIRE].

    ADS  Google Scholar 

  73. A. Bacchetta, F. Conti and M. Radici, Transverse-momentum distributions in a diquark spectator model, Phys. Rev. D 78 (2008) 074010 [arXiv:0807.0323] [INSPIRE].

    ADS  Google Scholar 

  74. J. She, J. Zhu and B.-Q. Ma, Pretzelosity \( h_{{^{1T}}}^{\bot } \) and quark orbital angular momentum, Phys. Rev. D 79 (2009) 054008 [arXiv:0902.3718] [INSPIRE].

    ADS  Google Scholar 

  75. H. Avakian, A. Efremov, P. Schweitzer and F. Yuan, Transverse momentum dependent distribution function \( h_{{^{1\mathrm{T}}}}^{\bot } \) and the single spin asymmetry \( A_{UT}^{{\sin \left( {3\phi -3S} \right)}} \), Phys. Rev. D 78 (2008) 114024 [arXiv:0805.3355] [INSPIRE].

    ADS  Google Scholar 

  76. H. Avakian, A. Efremov, P. Schweitzer and F. Yuan, The transverse momentum dependent distribution functions in the bag model, Phys. Rev. D 81 (2010) 074035 [arXiv:1001.5467] [INSPIRE].

    ADS  Google Scholar 

  77. B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a light-cone quark model, Phys. Rev. D 78 (2008) 034025 [arXiv:0806.2298] [INSPIRE].

    ADS  Google Scholar 

  78. S. Boffi, A. Efremov, B. Pasquini and P. Schweitzer, Azimuthal spin asymmetries in light-cone constituent quark models, Phys. Rev. D 79 (2009) 094012 [arXiv:0903.1271] [INSPIRE].

    ADS  Google Scholar 

  79. B. Pasquini and F. Yuan, Sivers and Boer-Mulders functions in Light-Cone Quark Models, Phys. Rev. D 81 (2010) 114013 [arXiv:1001.5398] [INSPIRE].

    ADS  Google Scholar 

  80. B. Pasquini and P. Schweitzer, Naive time-reversal odd phenomena in semi-inclusive deep-inelastic scattering from light-cone constituent quark models, Phys. Rev. D 83 (2011) 114044 [arXiv:1103.5977] [INSPIRE].

    ADS  Google Scholar 

  81. C. Lorce, B. Pasquini and M. Vanderhaeghen, Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon, JHEP 05 (2011) 041 [arXiv:1102.4704] [INSPIRE].

    ADS  Google Scholar 

  82. A. Efremov, P. Schweitzer, O. Teryaev and P. Zavada, Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion, Phys. Rev. D 80 (2009) 014021 [arXiv:0903.3490] [INSPIRE].

    ADS  Google Scholar 

  83. A. Efremov, P. Schweitzer, O. Teryaev and P. Zavada, The relation between TMDs and PDFs in the covariant parton model approach, Phys. Rev. D 83 (2011) 054025 [arXiv:1012.5296] [INSPIRE].

    ADS  Google Scholar 

  84. M. Strikman and C. Weiss, Chiral dynamics and partonic structure at large transverse distances, Phys. Rev. D 80 (2009) 114029 [arXiv:0906.3267] [INSPIRE].

    ADS  Google Scholar 

  85. D.I. Diakonov and V.Yu. Petrov, Spontaneous Breaking Of Chiral Symmetry In The Instanton Vacuum, Report LENINGRAD-86-1153, in G.M. Zinovev and V.P. Shelest eds., Hadron Matter under Extreme Conditions (in Russian), Naukova Dumka, Kiev, Ukraine (1986) [INSPIRE].

  86. D. Diakonov, M.V. Polyakov and C. Weiss, Hadronic matrix elements of gluon operators in the instanton vacuum, Nucl. Phys. B 461 (1996) 539 [hep-ph/9510232] [INSPIRE].

    Article  ADS  Google Scholar 

  87. C. Weiss and K. Goeke, Selfconsistent calculation of parton distributions at low normalization point in the chiral quark soliton model, hep-ph/9712447 [INSPIRE].

  88. S. Kahana and G. Ripka, Baryon Density of Quarks Coupled to a Chiral Field, Nucl. Phys. A 429 (1984) 462 [INSPIRE].

    ADS  Google Scholar 

  89. A. Bacchetta, M. Boglione, A. Henneman and P. Mulders, Bounds on transverse momentum dependent distribution and fragmentation functions, Phys. Rev. Lett. 85 (2000) 712 [hep-ph/9912490] [INSPIRE].

    Article  ADS  Google Scholar 

  90. P. Pobylitsa and M.V. Polyakov, New positivity bounds on parton distributions in multicolored QCD, Phys. Rev. D 62 (2000) 097502 [hep-ph/0004094] [INSPIRE].

    ADS  Google Scholar 

  91. P. Schweitzer, T. Teckentrup and A. Metz, Intrinsic transverse parton momenta in deeply inelastic reactions, Phys. Rev. D 81 (2010) 094019 [arXiv:1003.2190] [INSPIRE].

    ADS  Google Scholar 

  92. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. M. Strikman and C. Weiss, Chiral dynamics and the growth of the nucleons gluonic transverse size at small x, Phys. Rev. D 69 (2004) 054012 [hep-ph/0308191] [INSPIRE].

    ADS  Google Scholar 

  94. B. Dressler, K. Goeke, M.V. Polyakov and C. Weiss, Flavor asymmetry of polarized anti-quark distributions and semiinclusive DIS, Eur. Phys. J. C 14 (2000) 147 [hep-ph/9909541] [INSPIRE].

    Article  ADS  Google Scholar 

  95. P. Pobylitsa, M.V. Polyakov, K. Goeke, T. Watabe and C. Weiss, Isovector unpolarized quark distribution in the nucleon in the large-N c limit, Phys. Rev. D 59 (1999) 034024 [hep-ph/9804436] [INSPIRE].

    ADS  Google Scholar 

  96. P. Pobylitsa and M.V. Polyakov, Transverse spin distribution function of nucleon in chiral theory, Phys. Lett. B 389 (1996) 350 [hep-ph/9608434] [INSPIRE].

    ADS  Google Scholar 

  97. P. Schweitzer, D. Urbano, M.V. Polyakov, C. Weiss, P. Pobylitsa and K. Goeke, Transversity distributions in the nucleon in the large-N c limit, Phys. Rev. D 64 (2001) 034013 [hep-ph/0101300] [INSPIRE].

    ADS  Google Scholar 

  98. V. Gribov, Space-time description of hadron interactions at high-energies, hep-ph/0006158 [INSPIRE].

  99. B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, The Four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [INSPIRE].

    ADS  Google Scholar 

  100. B. Blok, Y. Dokshitser, L. Frankfurt and M. Strikman, pQCD physics of multiparton interactions, Eur. Phys. J. C 72 (2012) 1963 [arXiv:1106.5533] [INSPIRE].

    Article  ADS  Google Scholar 

  101. M. Diehl, D. Ostermeier and A. Schafer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [arXiv:1111.0910] [INSPIRE].

    Article  ADS  Google Scholar 

  102. M. Diehl and A. Schafer, Theoretical considerations on multiparton interactions in QCD, Phys. Lett. B 698 (2011) 389 [arXiv:1102.3081] [INSPIRE].

    ADS  Google Scholar 

  103. A. Dorokhov and N. Kochelev, Instanton induced asymmetric quark configurations in the nucleon and parton sum rules, Phys. Lett. B 304 (1993) 167 [INSPIRE].

    ADS  Google Scholar 

  104. J. Balla, M.V. Polyakov and C. Weiss, Nucleon matrix elements of higher twist operators from the instanton vacuum, Nucl. Phys. B 510 (1998) 327 [hep-ph/9707515] [INSPIRE].

    ADS  Google Scholar 

  105. B. Dressler, M. Maul and C. Weiss, Twist four contribution to unpolarized structure functions F L and F 2 from instantons, Nucl. Phys. B 578 (2000) 293 [hep-ph/9906444] [INSPIRE].

    Article  ADS  Google Scholar 

  106. C. Weiss, Modeling power corrections to the Bjorken sum rule for the neutrino structure function F 1, J. Phys. G 29 (2003) 1981 [hep-ph/0210132] [INSPIRE].

    ADS  Google Scholar 

  107. G. Miller, M. Strikman and C. Weiss, Pion transverse charge density from timelike form factor data, Phys. Rev. D 83 (2011) 013006 [arXiv:1011.1472] [INSPIRE].

    ADS  Google Scholar 

  108. P. Faccioli, A. Schwenk and E. Shuryak, Instanton contribution to the pion electromagnetic form factor at Q 2 > 1GeV2, Phys. Rev. D 67 (2003) 113009 [hep-ph/0202027] [INSPIRE].

    ADS  Google Scholar 

  109. H1 collaboration, F. Aaron et al., Diffractive Electroproduction of ρ and φ Mesons at HERA, JHEP 05 (2010) 032 [arXiv:0910.5831] [INSPIRE].

    Article  ADS  Google Scholar 

  110. ZEUS collaboration, S. Chekanov et al., Exclusive ρ 0 production in deep inelastic scattering at HERA, PMC Phys. A 1 (2007) 6 [arXiv:0708.1478] [INSPIRE].

    ADS  Google Scholar 

  111. L.L. Frankfurt, M.I. Strikman, L. Mankiewicz, A. Schafer, E. Rondio, A. Sandacz and V. Papavassiliou, The valence and strange sea quark spin distributions in the nucleon from semiinclusive deep inelastic lepton scattering, Phys. Lett. B 230 (1989) 141 [INSPIRE].

    ADS  Google Scholar 

  112. E. Christova and E. Leader, A Strategy for the analysis of semiinclusive deep inelastic scattering, Nucl. Phys. B 607 (2001) 369 [hep-ph/0007303] [INSPIRE].

    Article  ADS  Google Scholar 

  113. http://wwwcompass.cern.ch/.

  114. A. Accardi, V. Guzey, A. Prokudin and C. Weiss, Nuclear physics with a medium-energy Electron-Ion Collider, Eur. Phys. J. A 48 (2012) 92 [arXiv:1110.1031] [INSPIRE].

    ADS  Google Scholar 

  115. https://www.jlab.org/.

  116. CDF collaboration, F. Abe et al., Measurement of double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 79 (1997) 584 [INSPIRE].

    Article  ADS  Google Scholar 

  117. CDF collaboration, F. Abe et al., Double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 56 (1997) 3811 [INSPIRE].

    ADS  Google Scholar 

  118. D0 collaboration, V. Abazov et al., Double parton interactions in photon +3 jet events in \( \overline{p}p \) collisions \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [INSPIRE].

    ADS  Google Scholar 

  119. L. Frankfurt, M. Strikman and C. Weiss, Dijet production as a centrality trigger for pp collisions at CERN LHC, Phys. Rev. D 69 (2004) 114010 [hep-ph/0311231] [INSPIRE].

    ADS  Google Scholar 

  120. L. Frankfurt, M. Strikman, D. Treleani and C. Weiss, Evidence for color fluctuations in the nucleon in high-energy scattering, Phys. Rev. Lett. 101 (2008) 202003 [arXiv:0808.0182] [INSPIRE].

    Article  ADS  Google Scholar 

  121. CLAS collaboration, S. Morrow et al., Exclusive ρ 0 electroproduction on the proton at CLAS, Eur. Phys. J. A 39 (2009) 5 [arXiv:0807.3834] [INSPIRE].

    ADS  Google Scholar 

  122. M. Guidal and S. Morrow, Exclusive ρ 0 electroproduction on the proton: GPDs or not GPDs?, arXiv:0711.3743 [INSPIRE].

  123. P. Schweitzer, Polarized quark and antiquark distribution functions of the nucleon in the chiral quark-soliton model, Doctoral dissertation, Bochum University, Germany, unpublished (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Weiss.

Additional information

ArXiv ePrint: 1210.1267

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, P., Strikman, M. & Weiss, C. Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking. J. High Energ. Phys. 2013, 163 (2013). https://doi.org/10.1007/JHEP01(2013)163

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)163

Keywords

Navigation